PředmětyPředměty(verze: 861)
Předmět, akademický rok 2019/2020
  
Diskrétní matematika - OPNM1M115A
Anglický název: Discrite mathematics
Zajišťuje: Katedra matematiky a didaktiky matematiky (41-KMDM)
Fakulta: Pedagogická fakulta
Platnost: od 2018
Semestr: zimní
E-Kredity: 4
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/1 Z [hodiny/týden]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Je zajišťováno předmětem: OPMM2M109A
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: doc. RNDr. Antonín Jančařík, Ph.D.
Anotace -
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (03.09.2018)
Hlavní témata: Pravidlo součtu a součinu Permutace Kombinace Variace Diskrétní pravděpodobnost Základní pojmy teorie grafů Stromy. Kostra grafu. Hledání optimální cesty. Souvislost grafu, vzdálenost v grafu, uzavřené tahy, Hamiltonovské a Eulerovské grafy. Rovinné grafy a mapy. Eulerův vzorec. Barvení grafu.
Cíl předmětu
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (03.09.2018)

Cílem předmětu je seznámit studenty se základy kombinatoriky a teorie grafů a na několika vybraných tématech ukázat specifické způsoby myšlení v tomto oboru. Bude zdůrazněna motivace praktickými problémy a účinnost jejich řešení. Především v kombinatorice je důraz položen na didaktickou stránku celé problematiky.

Literatura
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (03.09.2018)

NEŠETŘIL, J. Teorie grafů. Praha: SNTL, 1979.

MATOUŠEK, J., NEŠETŘIL, J. Kapitoly z diskrétní matematiky. Praha: Matfyzpress, 2000.

CALDA, E., DUPAČ, V. Kombinatorika, pravděpodobnost, statistika. Matematika pro gymnázia. Praha: Prometheus, 2003, ISBN 80-7196-147-7.

CALDA, E. Kombinatorika pro učitelské studium. Praha: MatfyzPres. 1996. rtFragment-->

 

 

Metody výuky
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (03.09.2018)

Seminář - workshop.

Požadavky ke zkoušce
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (05.09.2019)

Student musí prokázat schopnost řešit úlohy prostřednictvím písemné prace a schopnost vyložit řešení formou vystoupení u tabule v průběhu semináře, zde se posuzuje nejen správno řešení a srozumitelnost výkladu, ale také schopnost představit další metody řešení a nalézt chybu v nesprávném postupu.

Sylabus
Poslední úprava: doc. RNDr. Antonín Jančařík, Ph.D. (03.09.2018)

Cílem předmětu je seznámit studenty se základy kombinatoriky a teorie grafů a na několika vybraných tématech ukázat specifické způsoby myšlení v tomto oboru. Bude zdůrazněna motivace praktickými problémy a účinnost jejich řešení. Především v kombinatorice je důraz položen na didaktickou stránku celé problematiky.

 

Hlavní témata:

Pravidlo součtu a součinu

Permutace

Kombinace

Variace

Diskrétní pravděpodobnost

Základní pojmy teorie grafů

Stromy.  Kostra grafu. Hledání optimální cesty.

Souvislost grafu, vzdálenost v grafu, uzavřené tahy, Hamiltonovské a Eulerovské grafy.

Rovinné grafy a mapy. Eulerův vzorec.

Barvení grafu.

 
Univerzita Karlova | Informační systém UK