PředmětyPředměty(verze: 849)
Předmět, akademický rok 2019/2020
   Přihlásit přes CAS
Topologické a geometrické vlastnosti konvexních množin I - NRFA073
Anglický název: Topological and Geometric Properties of Convex Sets I
Zajišťuje: Katedra matematické analýzy (32-KMA)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2019
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Třída: DS, matematická analýza
Kategorizace předmětu: Matematika > Geometrie
Anotace -
Poslední úprava: T_KMA (03.05.2007)
Prednáška je venována základním i hlubším vlastnostem kompaktních konvexních množin a jejich aplikacím.
Cíl předmětu
Poslední úprava: T_KMA (03.05.2007)

Prednáška je venována základním i hlubším vlastnostem kompaktních konvexních množin a jejich aplikacím.

Literatura
Poslední úprava: T_KMA (03.05.2007)

Alfsen: Compact convex sets and boundary integrals

Asimow, Ellis: Convexity theory and its applications in functional analysis

Johnson, Lindenstrauss: Handbook of geometry of Banach spaces I, II

Sylabus -
Poslední úprava: SPURNY/MFF.CUNI.CZ (14.08.2009)

Stěžejním tématem bude integrální reprezentace konvexních množin a její aplikace. Program bude upřesněn podle zájmu studentů a jejich úrovně, je možno prezentovat základní věty Choquetovy teorie (vlastnosti afinních spojitých funkcí, Choquet-Bishop-de Leeuwova věta, Edwardsova věta, charakterizace simplexu) nebo lze studovat partie pokročilejší (topologické vlastnosti množiny extremálních bodů, Haydonova věta, Poulsenův simplex a jeho vlastnosti, Lazarova věta a její důsledky, součiny a limity kompaktních konvexních množin, $L_1$--preduály a jejich charakterizace).

Přednáška může být proslovena anglicky.

Vstupní požadavky -
Poslední úprava: T_KMA (03.05.2007)

Základní znalosti funkcionální analýzy a topologie.

 
Univerzita Karlova | Informační systém UK