PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Markovské distribuce nad grafy - NMTP574
Anglický název: Markov Distributions on Graphs
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018 do 2018
Semestr: letní
E-Kredity: 3
Rozsah, examinace: letní s.:2/0 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: Ing. František Matúš, CSc.
Třída: M Mgr. PMSE
M Mgr. PMSE > Volitelné
Kategorizace předmětu: Matematika > Pravděpodobnost a statistika
Anotace -
Poslední úprava: T_KPMS (16.05.2013)
Grafické Markovské modely nad neorientovanými a orientovanými grafy pro kategoriální a Gaussovské náhodné veličiny.
Cíl předmětu -
Poslední úprava: T_KPMS (16.05.2013)

Základy teorie grafických modelů nad neorientovanými a orientovanými grafy pro kategoriální a gaussovské veličiny

Literatura
Poslední úprava: T_KPMS (16.05.2013)

S. L. Lauritzen (1996) Graphical Models. Clarendon Press, Oxford

J. Whittaker (1990) Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, New York

Metody výuky -
Poslední úprava: T_KPMS (16.05.2013)

Přednáška.

Sylabus -
Poslední úprava: T_KPMS (16.05.2013)

1. Úvod. Grafy, simpliciální rozklady na podgrafy, triangulované grafy. Algoritmy na rozklad a triangularizaci. 2. Rozložitelné hypergrafy. Orientované acyklické grafy, d-separace a moralizace. 3. Podmíněná nezávislost, relace podmíněné nezávislosti, Markovské vlastnosti vzhledem k orientovaným a neorientovaným grafům. 4. Hammersley-Cliffordova věta. 5. Kontingenční tabulky: explicitní vzorce pro maximálně věrohodné odhady v grafických modelech. Iterativní metody a marginální problém. 6. Gaussovské grafické modely: maximálně věrohodné odhady nad triangulovanými grafy. Přehled iterativních metod řešení. 7. Pravděpodobnostní expertní systémy. Lokální výpočty.

 
Univerzita Karlova | Informační systém UK