PředmětyPředměty(verze: 806)
Předmět, akademický rok 2017/2018
   Přihlásit přes CAS
Termodynamika a mechanika pevných látek - NMMO404
Anglický název: Themodynamics and Mechanics of Solids
Zajišťuje: Matematický ústav UK (32-MUUK)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2014
Semestr: letní
E-Kredity: 5
Rozsah, examinace: letní s.:2/1 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Garant: doc. RNDr. Martin Kružík, Ph.D.
RNDr. Ondřej Souček, Ph.D.
Třída: M Mgr. MOD
M Mgr. MOD > Povinné
Kategorizace předmětu: Matematika > Matematické modelování ve fyzice
Neslučitelnost : NMOD040
Záměnnost : NMOD040
Anotace -
Poslední úprava: T_MUUK (14.05.2013)

Základní matematické metody používané pro analýzu okrajových a počátečních úloh vznikajících v mechanice pevných látek.
Literatura -
Poslední úprava: T_MUUK (27.04.2016)

Ciarlet, P. G. (1988). Mathematical elasticity. Vol. I, Volume 20 of

Studies in Mathematics and its Applications. Amsterdam:

North-Holland Publishing Co. Three-dimensional elasticity.

Gurtin, M. E., E. Fried, and L. Anand (2010). The mechanics and

thermodynamics of continua. Cambridge: Cambridge

University Press.

Šilhavý, M. (1997). The mechanics and thermodynamics of continuous

media. Texts and Monographs in Physics. Berlin: Springer-Verlag.

Sylabus -
Poslední úprava: doc. RNDr. Martin Kružík, Ph.D. (24.05.2017)

Isotropní funkce, objektivní funkce, princip nezávislosti na pozorovateli, elastické materiály v konečné pružnosti, linearizovaná teorie, nestlačitelné materiály v konečné pružnosti i linearizované teorii, hyperelasticita, chování modelu vzhledem k determinantu gradientu deformace, definice prvního Piola-Kirchhofova tenzoru napětí v případě hyperelastického materiálu, materiálové modely v konečné pružnosti, elastické konstanty hyperelastického materiálu,

homogenní-nehomogenní materiál

Rheologické modely, Kelvinův-Voigtův materiál, Maxwellův materiál, viskózní materiály s vedením tepla, termoelastický materiál, Clausiova-Duhemova nerovnost a její důsledky pro konstitutivní vztahy.

 
Univerzita Karlova | Informační systém UK