PředmětyPředměty(verze: 941)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Nekomutativní harmonická analýza - NMAG534
Anglický název: Non-commutative harmonic analysis
Zajišťuje: Matematický ústav UK (32-MUUK)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2022 do 2022
Semestr: letní
E-Kredity: 6
Rozsah, examinace: letní s.:3/1, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Způsob výuky: prezenční
Garant: doc. RNDr. Svatopluk Krýsl, Ph.D.
Třída: M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Kategorizace předmětu: Matematika > Geometrie
Anotace -
Poslední úprava: T_MUUK (13.05.2015)
Harmonická analýza zobecňuje klasickou Fourierovu analýzu a související analýzu parciálních diferenciálních rovnic v R^n pro jiné než translační abelovskou grupu R^n. Druhá část přednášky.
Cíl předmětu -
Poslední úprava: T_MUUK (13.05.2015)

Naučit základy nekomutativní harmonické analýzy.

Podmínky zakončení předmětu -
Poslední úprava: doc. RNDr. Svatopluk Krýsl, Ph.D. (11.06.2023)

Znalost definic a vět a jejich schopnost je aplikovat v přehledných

situacích. Zkouška je ústní s písemnou přípravou. Zápočet je udělen za

aktivní účast na cvičeních, kde se dokazují snadná tvrzení nebo

počítají příklady z harmonické analýzy. Zápočet není podmínkou pro získání zkoušky.

Literatura -
Poslední úprava: doc. RNDr. Svatopluk Krýsl, Ph.D. (22.02.2019)

Goodman, R., Walach, N., Invariants and Representations of Classical Groups, Oxford

Knapp, A., Representation theory of semi-simple Lie groups: An overview based on examples, Princeton

Kirillov, A., Representation theory and Noncommutative Harmonic Analysis I, II, Springer

Dixmier, J., Envelopping Algebras, AMS

Sepanski, M., Compact Lie groups, Springer

Metody výuky -
Poslední úprava: T_MUUK (13.05.2015)

Přednáška a cvičení

Požadavky ke zkoušce -
Poslední úprava: doc. RNDr. Svatopluk Krýsl, Ph.D. (22.02.2019)

Zkouší se definice a věty a jejich aplikace v přehledných situacích.

Sylabus -
Poslední úprava: doc. RNDr. Svatopluk Krýsl, Ph.D. (11.06.2023)

1) Univerzální obalující algebra Lieovy algebry a věta Poincareho--Birkhoffa--Witta; filtrace, asociovana gradace a noetherovskost univerzalnich obalujicich algeber.

2) Vermovy moduly a opakování a doplnění teorie reprezentací jednoduchych Lieovych algeber: teorie nejvyšší váhy. Vermovy moduly a jejich vztah k ireducibilním a konečně rozměrným reprezentacím. Pokud zbyde cas, tak nektera z vet Bernsteina--Gelfanda--Gelfanda o homomorfizmech Vermovych modulu.

3) Věta (Botta--)Borela--Weila: fíbrace - vektorove a hlavni, asociované fíbrace, holomorfnost. Popis holom. sekci indukovanych komplexnich primkovych bandlu nad vlajkovou varietou, G^C/B, kde G^C je komplexifikace jednoduche algebraicke Lieovy grupy a B je nejaka jeji Borelova podgrupa.

Dle casovych moznosti: Unitární duál SL(2,R).

 
Univerzita Karlova | Informační systém UK