Implementace neuronových sítí I - NAIX060
Anglický název: Neural Networks Implementation I
Zajišťuje: Studijní oddělení (32-STUD)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2019
Semestr: zimní
E-Kredity: 6
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Je zajišťováno předmětem: NAIL060
Garant: RNDr. Petr Božovský, CSc.
Třída: Informatika Mgr. - Teoretická informatika
Kategorizace předmětu: Informatika > Teoretická informatika
Prerekvizity : {NXXX038, NXXX039, NXXX040, NXXX067, NXXX069}
Neslučitelnost : NAIL060
Záměnnost : NAIL060
Výsledky anket   Termíny zkoušek   Rozvrh ZS   Nástěnka   
Anotace -
Metody a techniky implementace základních modelů neuronových sítí. Backpropagation. Zvyšování efektivity modelů, příbuzné a odvozené modely. Volba modelu, topologie a velikosti sítě. Adaptivní strategie optimalizace sítí. Cvičení je zaměřeno na praktické realizace vybraných aplikací.
Poslední úprava: T_KSI (15.04.2003)
Cíl předmětu -

Naučit další metody a techniky implementace základních modelů neuronových sítí

Poslední úprava: T_KTI (23.05.2008)
Podmínky zakončení předmětu -

Podmínkou pro udělení zápočtu je úspěšná prezentace fungujících programů pro úlohy, které jsou v předmětu probírány. Tyto programy musí být vlastním dílem studenta s případným využitím vhodných frameworků, jejichž použití podléhá schválení vyučujícím.

Nedílnou součástí zápočtu je i dostatečná účast na semináři, kde probíhá rozbor úloh a průběžná diskuze.

Poslední úprava: Božovský Petr, RNDr., CSc. (16.10.2017)
Literatura

Beale R.: Neural Computing - An Introduction. Adam Hilger, Bristol, 1990

Goles E.: Lyapunov functions associated to automata networks, in Automata networks in computer science, Princeton University Press, 1987

Tank D., Hopfield J.: Simple "Neural" Optimization Networks, IEEE TCS CAS-33, pp.533-541, 1986

Poslední úprava: G_I (28.05.2004)
Požadavky ke zkoušce -

Zkouška probíhá ústní formou. Student má možnost si připravit v rámci zkoušky písemné poznámky, ze kterých v průběhu ústní zkoušky vychází.

Požadavky u zkoušky odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Poslední úprava: Božovský Petr, RNDr., CSc. (16.10.2017)
Sylabus -

Metody a techniky implementace základních modelů neuronových sítí. Backpropagation. Zvyšování efektivity modelů, příbuzné a odvozené modely. Volba modelu, topologie a velikosti sítě. Adaptivní strategie optimalizace sítí. Cvičení je zaměřeno na praktické realizace vybraných aplikací.

Poslední úprava: T_KSI (15.04.2003)