Matematika III. - MG451P36
Anglický název: Mathematics III.
Český název: Matematika III.
Zajišťuje: Ústav hydrogeologie, inženýrské geologie a užité geofyziky (31-450)
Fakulta: Přírodovědecká fakulta
Platnost: od 2020
Semestr: zimní
E-Kredity: 6
Způsob provedení zkoušky: zimní s.:kombinovaná
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Vysvětlení: Výuka probíhá s ohledem na situaci dle nařízení hyg. stanice hl.m. Prahy a MŠMT
Poznámka: povolen pro zápis po webu
Garant: doc. RNDr. Jiří Mls, CSc.
Vyučující: doc. RNDr. Jiří Mls, CSc.
Výsledky anket   Termíny zkoušek   Rozvrh ZS   
Anotace
Pokračování kursu matematiky, navazuje na matematiku 2B nebo vyšší
kursy matematiky. Zaměřuje se na matematické základy modelování.
Určeno prostudenty všech oborů, kteří se zajímají o matematické
modelování a aplikovanou matematiku. Předmět je v seznamu doporučených
případně povinně volitelných předmětů pro aplikované geologických obory:
hydrogeologie, inženýrské geologie, užité geofyziky a pro bakalářský
a magisterský program Hydrologie a hydrogeologie.
Poslední úprava: Mls Jiří, doc. RNDr., CSc. (20.04.2022)
Literatura

L. Bican, 1979, Lineární algebra, SNTL; Praha
J. Kurzweil, 1978, Obyčejné diferenciální rovnice, SNTL; Praha
A. Ralston, 1973, Základy numerické matematiky, Academia; Praha
K. Rektorys, 1974, Přehled užité matematiky, SNTL; Praha
K. Rektorys, 1999, Variační metody v inženýrských problémech
   a v problémech matematické fyziky, Academia; Praha
E. Vitásek, 1994, Základy teorie numerických metod pro řešení
   diferenciálních rovnic, Academia; Praha

Všechny uvedené knihy svým rozsahem značně převyšují rozsah
probírané látky; před jejich studiem je třeba se poradit se
s přednášejícím.

Poslední úprava: Mls Jiří, doc. RNDr., CSc. (20.04.2022)
Požadavky ke zkoušce

Zkouška je ústní a má písemnou část. Vyžadována je znalost odpřednášené
látky. Předpokladem je získání zápočtu. K získání zápočtu je mimo jiné
třeba vypracovat zadané úlohy. S požadavky na zápočet jsou
studenti podrobně seznámeni v úvodním cvičení.

Poslední úprava: Mls Jiří, doc. RNDr., CSc. (20.04.2022)
Sylabus

Eukleidovský prostor pythagorovská metrika, konvergence, množiny
a množinové operace.

Aritmetický lineární prostor, sčítání a násobení, lineární závislost,
base, dimense, matice, maticový součin, věta o existenci polární base,
kartézské tensory, věta o transformaci symetrického tensoru druhého řádu.

Vnější a vnitřní míra, Lebesgueova míra, sigma-aditivní množinová funkce,
prostor s mírou.

Měřitelná funkce, jednoduchá funkce, Lebesgueův integrál.

Oblast s lipschitzovskou hranicí, vnější normála, plošný integrál,
Gaussova věta.

Křivka v R^N, délka křivky, křivkový integrál prvního a druhého druhu.

Obyčejné diferenciální rovnice, klasifikace, existenční věty,
maximální řešení.

Numerická řešení obyčejných diferenciálních rovnic včetně sousav a úloh
s rovnicemi vyšších řádů.

Fourierovy řady, Fourierův integrál, Fourierova transformace, diskrétní
Fourierova transformace.

Poslední úprava: Mls Jiří, doc. RNDr., CSc. (20.04.2022)