PředmětyPředměty(verze: 855)
Předmět, akademický rok 2019/2020
  
Matematika III. - MG451P36
Anglický název: Mathematics III.
Český název: Matematika III.
Zajišťuje: Ústav hydrogeologie, inž. geologie a užité geofyziky (31-450)
Fakulta: Přírodovědecká fakulta
Platnost: od 2015
Semestr: zimní
E-Kredity: 6
Způsob provedení zkoušky: zimní s.:kombinovaná
Rozsah, examinace: zimní s.:2/2 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Garant: doc. RNDr. Jiří Mls, CSc.
Vyučující: doc. RNDr. Jiří Mls, CSc.
Anotace
Poslední úprava: doc. RNDr. Jiří Mls, CSc. (13.06.2019)
Pokračování kursu matematiky, navazuje na matematiku 2B nebo vyšší
kursy matematiky. Zaměřuje se na matematické základy modelování.
Určeno prostudenty všech oborů, kteří se zajímají o matematické
modelování a aplikovanou matematiku. Předmět je v seznamu doporučených
případně povinně volitelných předmětů pro aplikované geologických obory:
hydrogeologie, inženýrské geologie, užité geofyziky .
Literatura
Poslední úprava: doc. RNDr. Jiří Mls, CSc. (13.06.2019)

L. Bican, 1979, Lineární algebra, SNTL; Praha
J. Kurzweil, 1978, Obyčejné diferenciální rovnice, SNTL; Praha
A. Ralston, 1973, Základy numerické matematiky, Academia; Praha
K. Rektorys, 1974, Přehled užité matematiky, SNTL; Praha
K. Rektorys, 1999, Variační metody v inženýrských problémech
   a v problémech matematické fyziky, Academia; Praha
E. Vitásek, 1994, Základy teorie numerických metod pro řešení
   diferenciálních rovnic, Academia; Praha

Požadavky ke zkoušce
Poslední úprava: doc. RNDr. Jiří Mls, CSc. (13.06.2019)

Zkouška je ústní a má písemnou část. Vyžadována je znalost odpřednášené
látky. Předpokladem je získání zápočtu. S požadavky na zápočet jsou
studenti seznámeni v úvodním cvičení.

Sylabus
Poslední úprava: doc. RNDr. Jiří Mls, CSc. (13.06.2019)

Eukleidovský prostor pythagorovská metrika, konvergence, množiny
a množinové operace.

Aritmetický lineární prostor, sčítání a násobení, lineární závislost,
base, dimense, matice, maticový součin, věta o existenci polární base,
kartézské tensory, věta o transformaci symetrického tensoru druhého řádu.

Vnější a vnitřní míra, Lebesgueova míra, sigma-aditivní množinová funkce,
prostor s mírou.

Měřitelná funkce, jednoduchá funkce, Lebesgueův integrál.

Oblast s lipschitzovskou hranicí, vnější normála, plošný integrál,
Gaussova věta.

Křivka v R^N, délka křivky, křivkový integrál prvního a druhého druhu.

Obyčejné diferenciální rovnice, klasifikace, existenční věty,
maximální řešení.

Numerická řešení obyčejných diferenciálních rovnic včetně sousav a úloh
s rovnicemi vyšších řádů.

Fourierovy řady, Fourierův integrál, Fourierova transformace, diskrétní
Fourierova transformace.

 
Univerzita Karlova | Informační systém UK