PředmětyPředměty(verze: 908)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Statistics in SPSS - JSM406
Anglický název: Statistics in SPSS
Zajišťuje: Katedra sociologie (23-KS)
Fakulta: Fakulta sociálních věd
Platnost: od 2021 do 2022
Semestr: oba
E-Kredity: 8
Rozsah, examinace: 1/1, Zk [HT]
Počet míst: zimní:neurčen / 50 (20)
letní:neurčen / neurčen (20)
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst: ne
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
předmět lze zapsat v ZS i LS
Garant: PhDr. Ing. Petr Soukup, Ph.D.
Mgr. Ivan Petrúšek
Vyučující: Mgr. Ivan Petrúšek
PhDr. Ing. Petr Soukup, Ph.D.
Mgr. Tereza Svobodová
Třída: Courses for incoming students
Je prerekvizitou pro: JSM503
Je záměnnost pro: JSM513
Anotace - angličtina
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (05.10.2022)
This introductory course of applied statistics is primarily recommended to students of Erasmus+ and other foreign exchange programs. The course is also recommended to Czech students from 3rd or higher grade (programs: Applied research and its methodology, Social and Public Policy). Students will learn and practice basic statistical methods by analyzing sociological survey data in a program called SPSS (Statistical Product and Service Solutions). As this is an introductory course, no previous knowledge of statistics is required.
Literatura - angličtina
Poslední úprava: Mgr. Ivan Petrúšek (25.01.2022)


Field, A. (2009). Discovering Statistics Using SPSS. Third edition. London: Sage.

(detailed reading assignment from the course textbook will be specified after each class; please view the files section for pdf of the textbook)


Norušis,M., J. (2005). SPSS 13.0 :statistical procedures companion. New Jersey: Prentice Hall.

deVaus, D. (2002). Surveys in social research. London:Routledge - Taylor & Francis Group.

Recommended book in Czech language: Mareš, P. - Rabušic, L. - Soukup, P. (2015): Analýza sociálněvědních dat (nejen) v SPSS. Brno: muniPRESS. (ch. 2 - ch. 10)

Metody výuky - angličtina
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (05.10.2022)

The classes are a combination of lectures and seminars. The first part of each class (approx. 40 minutes) is a lecture during which the tutor introduces key concepts in statistical theory and methods of data analysis (see syllabus below). The second part (approx. 40 minutes) is a seminar where students apply the methods introduced during the lecture in the SPSS environment. Institute of Sociological Studies will provide the enrolled students with the SPSS licence (so that they will have the software installed on their personal computers).

The course will be taught in two parallel lectures:

1) Tuesday, 8 a.m., Pekařská building, room 308, 

also possible to enter online via ZOOM:


Meeting ID: 467 763 9176, Passcode: 355749

Materials (recordings, HW evaluation) are available through Google dics: 


2) Tuesday, 11 a.m, Pekařská building, room 308

also possible to enter online via ZOOM:

https://cuni-cz.zoom.us/j/7173160164 (Passcode: x2VC8r)


Požadavky ke zkoušce - angličtina
Poslední úprava: Mgr. Ivan Petrúšek (25.01.2022)

Grading will be based on homework assignments (7 mandatory assignments, each worth 5 points) and a final exam (worth 65 points). Students may earn up to 100 total points.

Deadline for homework assignments: Wednesday (11:59 pm) via email. In other words, students will have eight days to prepare and submit their homework assignments.


  • 91 - 100 points = grade A
  • 81 - 90 points = grade B
  • 71 - 80 points = grade C
  • 61 - 70 points = grade D
  • 51 - 60 points = grade E
  • 0 - 50 points = not passed (grade F)

NOTE: Total points earned will be rounded to the whole number (e. g. the overall result of 50.5 points is rounded to 51 points and corresponds to the grade E).

Sylabus - angličtina
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (28.09.2022)

Course Schedule

Week 1: Course overview. Introduction to SPSS environment.
Week 2: Descriptive vs inferential statistics. Levels of measurement.
Week 3: Introduction to probability and probability distributions.
Week 4: Sampling variation. Central limit theorem. Confidence intervals (for the mean).
Week 5: Statistical hypotheses testing framework. One-sample t-test.
Week 6: Independent-samples t-test. Paired-samples t-test.
Week 7: Exploring assumptions of parametric tests. Assumption of normality.
Week 8: Analysis of variance (within- and between-group variability, F-test, post-hoc tests).
Week 9: Analysis of categorical data I (confidence interval for a proportion, introduction to crosstabs).
Week 10: Analysis of categorical data II (chi-square test of independence, contingency coefficients, residuals).
Week 11: Correlation analysis (Covariance, Pearson and Spearman correlation coefficients, Scatterplot).

Univerzita Karlova | Informační systém UK