|
|
Soubory | Komentář | Kdo přidal | |
![]() |
article_sample202006-0001.pdf | Article sample | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
binary_logreg_HW.doc | description of binary logistic HW | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
blau_duncan_small.sav | Blau Duncan data (SEM practice) | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
CFA_WB.sav | CFA well-being data (1 factor model) | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
flats.omv | linear regression for flats - complete computation in JAMOVI | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
flats.sav | Data file for linear regression | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
INET.omv | Logistic regression for Internet data | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
INET.sav | Logistic regression data - Internet usage (WIP 2006) | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
INET.xlsx | Inet data in MS Excel format | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
ISSP_EFA.sav | Lecture 8 Exploratory factor analysis - data file | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture1_Advanced_2022.ppt | Lecture 1 recap | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture_11_Advanced_CFA.ppt | Lecture 11 CFA | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture_12_Advanced_CFA.IIppt.ppt | Lecture 11 CFA II | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture3_Advanced_2022.ppt | Linear regression diagnostics | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
LECTURE4_5_Advanced_2022.ppt | Lecture 4/5 Logistic regression | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture7_LCA_Advanced_2022.ppt | Lecture 7 Latent class analysis | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecture8_LCA_Advanced_2022.ppt | Lecture 8 Exploratory factor analysis | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecure10_Advanced_2022_Path_analysis.ppt | Lecture 10 Path analysis | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
lecure9_Advanced_2022_Intro_SEM.ppt | Lecture 9 Intro to SEM | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
library.sav | data for multinomial log reg | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
logregr_probability_curve.xls | How to prepare probability curve in Excel or in Jamovi | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
math_4_lca.omv | LCA results in JAMOVI | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
math_4_lca.sav | Lecture 7- data for attitudes for mathematics | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
motivation_ind.sav | Lecture 7 - Motivation for LCA data | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
MOTIVATION_lca.xls | Lecture 7 - Motivation for LCA | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
Regression_HW.doc | description of regression lectures and HW1 | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
SEM_reg_cor.sav | SEM Intro data | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
Titanic.csv | Logistic regression data - Titanic | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
Titanic.omv | Logistic regression for Titanic data | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
11_EVS99_CFA.sav | CFA EVS data for practising | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
11_MI_CESD8.sav | MI CESD8 data | PhDr. Ing. Petr Soukup, Ph.D. |
![]() |
11_MI_intel.sav | MI data | PhDr. Ing. Petr Soukup, Ph.D. |
|
||
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (06.02.2023)
This course is an overview course over topics of the use of statistics in sociology, which will cover advanced statistical procedures: linear regression, logistic regression, latent class analysis, exploratory factor analysis and confirmatory factor analysis. All procedures will be demonstrated and practised in Jamovi(2023). |
|
||
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (02.02.2022)
Exam consist of 5 homework, oral exam and draft (article) (every part is evaluated separately 0-100 %). Draft (article) should use classical structure: problem formulation (derived from theory), hypotheses formulation and statistical analysis for hypotheses evaluation (at least two techniques from sylabus). Weights for final evalution: every hw 10 %, oral exam 20 % ( for MA students) and draft 30 % (only for MA students). Final grading: 0-50 % 4 (failed), 51 % - 60 % E, ), 61 % - 70 % D, 71-80 % C, ), 81 % - 90 % B and 91 % and more A. |
|
||
Poslední úprava: PhDr. Ing. Petr Soukup, Ph.D. (13.02.2023)
Tarling, R. 2009. Statistical Modelling for Social Researchers, Routledge. |
|
||
Poslední úprava: PhDr. Petr Bednařík, Ph.D. (21.09.2023)
The course will be held in Pekarska building, computer lab 308 Online access is possible via ZOOM: https://cesnet.zoom.us/j/4677639176?pwd=dVAyWkJISGRrOGp2ZUJRc0I2Y3p2UT09 Meeting ID: 467 763 9176 Passcode: 355749
1. Introduction to Jamovi. Descriptive statistics and correlation analysis in Jamovi. Missing values, results, handling and replacing. (1 lecture) 2. Linear regression analysis - simple and multiple regression. Assumptions, model fit, possible modification of regression model. Model evaluation and interpretation. Dummy variables, multicollinearity, influential points, heteroscedasticity. Robust regression.(1st HW) (2 lectures) 3. Logistic regression - binary ordinal and polytomous model. Odds, odd ratio, logit. Model evaluation and interpretation. (2nd HW) (2 lectures) 4. Latent class analysis (typology from binary and nominal variables). Explanatory and confirmatory approach. Unconditional latent class probability and conditional probability of individual answer. Comparison of models (decision about the number of latent classes). (3rd HW) (1 lectures) 5. Exploratory factor analysis. Assumptions, number of factors, Extraction and rotation. Factor weights and interpretation of factors. Factor scores and it’s usage. (4th HW) (1 lecture) 6. Intro to SEM, correlation, regression and path analysis. 7. Confirmatory factor analysis for cardinal, ordinal and binary indicators. Model fit indices and criteria. Basic equations and graphical presentation. Modification indices, Bayesian estimation for nominal and ordinal data. (5th HW) (2 lectures) Exam consist of 5 homework and oral exam (every part is evaluated separately 0-100 %). Weights for final evalution: every hw 10 %, oral exam 50 % (for BA students). Final grading: 0-50 % 4 (failed), 51 % - 60 % E, ), 61 % - 70 % D, 71-80 % C, ), 81 % - 90 % B and 91 % and more A. |