**JEM013 - Game Theory** 

Seminar 4

**Repeated games** 

Sophio Togonidze Sophotogonidze@gmail.com

• In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today

• In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today

• In repeated games the same stage game (strategic form game) is played for some duration of T periods.

- In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today
- In repeated games the same stage game (strategic form game) is played for some duration of T periods.
- At each period, the outcomes of all past periods are observed by all players.

- In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today
- In repeated games the same stage game (strategic form game) is played for some duration of T periods.
- At each period, the outcomes of all past periods are observed by all players.
- Future payoffs are discounted proportionately at some rate  $\delta \in (0, 1]$ , called the discount factor.

- In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today
- In repeated games the same stage game (strategic form game) is played for some duration of T periods.
- At each period, the outcomes of all past periods are observed by all players.
- Future payoffs are discounted proportionately at some rate  $\delta \in (0, 1]$ , called the discount factor.
- The overall payoff is the sum of discounted payoffs at each period.

- In ongoing interactions, the promise of future rewards and thread of future punishments, *may* sometime provide incentive for good behaviour today
- In repeated games the same stage game (strategic form game) is played for some duration of T periods.
- At each period, the outcomes of all past periods are observed by all players.
- Future payoffs are discounted proportionately at some rate  $\delta \in (0, 1]$ , called the discount factor.
- The overall payoff is the sum of discounted payoffs at each period.
- Repeated play of the same strategic game *can* introduces new equilibria by allowing players to condition their actions on the way their opponents played in the previous periods.

•Stage game 
$$G = \{S_1, ..., S_N; U_1, ..., U_N\}$$
  
•Repeated game  $G(T, \delta)$   
T-number of repetitions (periods)  
 $\delta$ - discount factor  $\delta \in (0,1]$   
Integer - finitely repeated games  
 $\infty$  - infinitely repeated games

•after observing strategy choices in all previous periods player k's payoff is

$$V_{k} = \sum_{t=1}^{T} \delta^{t-1} U_{k} (S_{1}(t), \dots, S_{N}(t)) \quad \text{- present value}$$

•average payoff 
$$\pi_k = (1 - \delta)V_k \qquad T \to \infty$$

*Note:* 
$$\sum_{t=1}^{\infty} \delta^{t-1} \pi = \frac{\pi}{1-\delta}$$
  $\sum_{t=2}^{\infty} \delta^{t-1} \pi = \frac{\delta \pi}{1-\delta}$ 

# Strategies in repeated game:

- choose stage-game strategies in the 1st period
- in following periods, choose stage-game strategies as a function of the strategies in the previous periods.



 $\frac{\text{Repeated game}}{G(T=2, \delta=1)}$ 

:

 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate





 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate

> Nodes :  $a_1 a_2 - 1^{st}$  period  $a_1 a_2 - 2^{nd}$  period  $a_1 a_2$   $a_1 a_2$   $a_1 a_2$  $a_1 a_2$

Repeated game: G(T=2,  $\delta$ =1)

**Strategies in repeated game:** 

P<sub>1</sub>'s strategies:

# Type A:

:

 $a_1a_1a_1 \rightarrow t=1 \text{ play } a_1$ t=2 play  $a_1$  if P<sub>2</sub> played b<sub>1</sub> at t=1 play  $a_1$  if P<sub>2</sub> played b<sub>2</sub> at t=1

 $\begin{array}{c} a_1a_1a_2 \rightarrow t=1 \text{ play } a_1 \\ t=2 \text{ play } a_1 \text{ if } P_2 \text{ played } b_1 \text{ at } t=1 \\ \text{ play } a_2 \text{ if } P_2 \text{ played } b_2 \text{ at } t=1 \end{array}$ 

Total 8 strategies  $(=2 \cdot 2^2)$  of Type A

Total **32 strategies**  $(=2 \cdot 2^4)$  of **Type B** 



 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate : Repeated game:  $G(T=2, \delta=1)$ SPNE •Find all NE of the stage game -unique NE (a<sub>1</sub>,b<sub>1</sub>), payoffs (1,1) -unique SPNE: play NE every period

Note:Important assumptions!Important assumptionsImportant assumptions

Discount factor doesn't matter in this case

•At the last stage – always NE! -at 2<sup>nd</sup> stage : (a<sub>1</sub>,b<sub>1</sub>), payoffs (1,1)



Just add payoffs of the 2<sup>nd</sup> stage

Repeated game:  $G(T=2, \delta=1)$  **SPNE** •Find all NE of the stage game -<u>unique NE</u> (a<sub>1</sub>,b<sub>1</sub>), payoffs (1,1)

-<u>unique SPNE</u>: play NE every period

 Note:
 Important assumptions!

 Important assumptions
 Important assumptions

unique NE of the stage game

Discount factor doesn't matter in this case

•At the last stage – always NE! -at 2<sup>nd</sup> stage : (a<sub>1</sub>,b<sub>1</sub>), payoffs (1,1)



Just add payoffs of the 2<sup>nd</sup> stage

**NE:**  $(a_1, b_1)$ ; payoffs (1,1)

play  $(a_1, b_1)$  every stage; payoffs (1, 1)

No cooperation in finitely repeated PD.

Repeated game:  $G(T=2, \delta=1)$ •Find all NE of the stage game -<u>unique NE</u>  $(a_1,b_1)$ , payoffs (1,1)

<u>SPNE</u>

-unique SPNE: play NE every period

| Note: | Important assumptions!      |
|-------|-----------------------------|
|       | finite repetitions          |
|       | unique NE of the stage game |

Discount factor doesn't matter in this case

•At the last stage – always NE! -at  $2^{nd}$  stage :  $(a_1, b_1)$ , payoffs (1,1)



Just add payoffs of the 2<sup>nd</sup> stage

**NE:**  $(a_1, b_1)$ ; payoffs (1,1)

play  $(a_1, b_1)$  every stage; payoffs (1, 1)

No cooperation in finitely repeated PD.

We can get more cooperation in infinitely repeated games.

Repeated game:  $G(T=2, \delta=1)$ •Find all NE of the stage game

-<u>unique NE</u>  $(a_1,b_1)$ , payoffs (1,1)-unique SPNE: play NE every period

**SPNE** 

| Note: | Important assumptions!      |
|-------|-----------------------------|
|       | finite repetitions          |
|       | unique NE of the stage game |

Discount factor doesn't matter for this case

•At the last stage – always NE! -at  $2^{nd}$  stage :  $(a_1, b_1)$ , payoffs (1,1)

:



<u>Repeated game</u>:  $G(T=\infty, \delta \epsilon(0;1))$ 

 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate

# $\underbrace{\begin{array}{ccc} Stage game}{b_1} & P_2 & b_2 \\ B_1 & \underline{1}; \underline{1} & \underline{5}; 0 \\ P_1 & a_2 & 0; \underline{5} & 4; 4 \end{array}$

<u>Repeated game</u>:  $G(T=\infty, \delta \epsilon(0;1))$ 

All subgames in G(T= $\infty$ ,  $\delta \epsilon(0;1)$ ) are themselves G(T= $\infty$ ,  $\delta \epsilon(0;1)$ )games.

No last stage => we cannot use BI.

:

 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate

#### Stage game

 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate <u>Repeated game</u>: G(T= $\infty$ ,  $\delta \in (0;1)$ )

All subgames in  $G(T=\infty, \delta \epsilon(0;1))$  are themselves  $G(T=\infty, \delta \epsilon(0;1))$  games.

No last stage => we cannot use BI.

Construct trigger strategy:

#### <u>Def:</u>

Designate some profile of stage-game strategies  $(s_1, ..., s_N)$  to play each period. If only player k deviates from  $s_k$  in some period t, play k's <u>lowest-payoff stage-game NE</u> from t+1 on. Otherwise players continue playing the strategies  $(s_1, ..., s_N)$ each period.

#### Stage game



 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate <u>Repeated game</u>:  $G(T=\infty, \delta \epsilon(0;1))$ 

All subgames in  $G(T=\infty, \delta \epsilon(0;1))$  are themselves  $G(T=\infty, \delta \epsilon(0;1))$  games.

No last stage => we cannot use BI.

Construct trigger strategy:

### <u>Def:</u>

Designate some profile of stage-game strategies  $(s_1, ..., s_N)$  to play each period. If only player k deviates from  $s_k$  in some period t, play k's lowest-payoff stage-game NE from t+1 on. Otherwise players continue playing the strategies  $(s_1, ..., s_N)$ each period.

<u>Trigger strategy:</u>

t=1 play  $(a_2, b_2)$ t>1 play  $(a_2, b_2)$  if at (t-1)  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .

Switch to NE.

:

0

#### Stage game

 $a_1, b_1$  -defect  $a_2, b_2$  - cooperate

Trigger strategy:

t=1 play  $(a_2, b_2)$ t>1 play  $(a_2, b_2)$  if at (t-1)  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ . <u>Repeated game</u>:  $G(T=\infty, \delta \epsilon(0;1))$ 

<u>Check if it is SPNE</u>: Calculate a present value for playing  $(a_2, b_2)$  forever and compare it with a present value for one stage deviation and playing  $(a_1, b_1)$  from now on.

| $(a_2, b_2)$ forever | 2 | the best one stage deviation $+ (a_1, b_1)$ forever |
|----------------------|---|-----------------------------------------------------|
| 4 /(1-δ)<br>4        | 2 | $5+1\delta/(1-\delta)$<br>$5-5\delta+\delta$        |

 $=> \delta^* = 1/4$  - <u>critical value of  $\delta$ </u> for which trigger strategy is SPNE

=> In infinitely repeated PD there are <u>2 types of SPNE</u>: o Play  $(a_1, b_1)$  each period (any  $\delta \epsilon(0;1)$ )

Play the trigger strategy ( $\delta \ge \delta^*$ )



 $\frac{\text{Repeated game:}}{G(T=2, \delta \epsilon(0;1))}$ 

:



- <u>Repeated game</u>: G(T=2,  $\delta \epsilon(0;1)$ )
- 2 pure strategy NE:  $-(a_1,b_1)$ , payoffs (1,1)  $-(a_3,b_3)$ , payoffs (3,3)

In this game there is a SPNE, where  $(a_2,b_2)$  is played at the 1<sup>st</sup> period, although  $(a_2,b_2)$  is not NE.

Conditional strategy:

:

t=1 play  $(a_2, b_2)$ t=2 play  $(a_3, b_3)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .



## Conditional strategy:

t=1 play  $(a_2, b_2)$ t=2 play  $(a_3, b_3)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .  $\frac{\text{Repeated game}}{G(T=2, \delta \epsilon(0;1))}$ 

:

Check if it is SPNE:

The best deviation:  $P_1: a_2 \rightarrow a_1$ (4  $\rightarrow$  5)  $P_2: b_2 \rightarrow b_1$ (4  $\rightarrow$  5)

| No de            | eviation | Deviation |            |
|------------------|----------|-----------|------------|
| P <sub>1</sub> : | 4+3δ     | >         | $5+\delta$ |
| P <sub>2</sub> : | 4+3δ     | >         | $5+\delta$ |

 $=> \delta ≥ 1/2$  - critical value of δ for which the conditional strategy is SPNE

## Other SPNE?

Any combination of the stage game NE is always SPNE



```
<u>Repeated game</u>:
G(T=3, \delta \in (0;1))
```

## Conditional strategy:

 $t=1 play (a_2, b_2)$ 

:

- t=2 play  $(a_2, b_2)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .
- t=3 play  $(a_3, b_3)$  if at t=2  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .

| Stage game |                | $P_2$          |                |                     |
|------------|----------------|----------------|----------------|---------------------|
|            |                | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub>      |
| D          | a <sub>1</sub> | <u>1;1</u>     | <u>5</u> ; 0   | 0 ;-2               |
| 1          | a <sub>2</sub> | 0 ; <u>5</u>   | 4;4            | -1;0                |
|            | a <sub>3</sub> | -2 ; 0         | 0 ;-1          | <u>3</u> ; <u>3</u> |

Conditional strategy:

- $t=1 play (a_2, b_2)$
- t=2 play  $(a_2, b_2)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .
- t=3 play  $(a_3, b_3)$  if at t=2  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .

<u>Repeated game</u>: G(T=3,  $\delta \epsilon(0;1)$ )

:

Find the critical value of  $\delta$  for which this conditional strategy is SPNE.

- Last stage t=3 no deviation (2NE)
- t=2 <u>No deviation</u> <u>Deviation</u>  $P_{1,}P_{2}$ :  $4+4\delta+3\delta^{2} \ge 4+5\delta+\delta^{2}$
- $=>\delta\geq 1/2$  (same as the case with T=2)
- •t=1 <u>No deviation</u> <u>Deviation</u>  $P_{1}, P_{2}: 4+4\delta+3\delta^{2} \ge 5+\delta+\delta^{2}$   $2\delta^{2}+3\delta-1\ge 0$  $\Longrightarrow \delta\ge 0.281$

•Put both conditions together  $\Rightarrow \delta \ge 1/2$ .



 $\frac{\text{Repeated game}}{G(T=2, \delta \epsilon(0;1))}$ 

:

Is it possible to construct a conditional strategy, where  $(a_2, b_2)$  is played at the 1<sup>st</sup> period at  $G(T=2,\delta=0.45)$ ?

Conditional strategy:

t=1 play  $(a_2, b_2)$ t=2 play  $(a_3, b_3)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .

 $\delta \ge 1/2$  - critical value of  $\delta$  for which the conditional strategy is SPNE



Conditional strategy:

t=1 play  $(a_2, b_2)$ t=2 play  $(a_3, b_3)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$ .

 $\delta \ge 1/2$  - critical value of  $\delta$  for which the conditional strategy is SPNE

<u>Repeated game</u>: G(T=2,  $\delta \in (0;1)$ )

:

Is it possible to construct a conditional strategy, where  $(a_2, b_2)$  is played at the 1<sup>st</sup> period at  $G(T=2,\delta=0.45)$ ?

With pure strategy punishment -no, with mixed strategy punishment -yes.

| Stage game |                | $P_2$          |                |                     |
|------------|----------------|----------------|----------------|---------------------|
|            |                | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub>      |
| D          | a <sub>1</sub> | <u>1;1</u>     | <u>5</u> ; 0   | 0 ;-2               |
| <b>「</b> 1 | a <sub>2</sub> | 0 ; <u>5</u>   | 4;4            | -1 ; 0              |
|            | a <sub>3</sub> | -2 ; 0         | 0 ;-1          | <u>3</u> ; <u>3</u> |

Conditional strategy:

t=1 play  $(a_2, b_2)$ t=2 play  $(a_3, b_3)$  if at t=1  $(a_2, b_2)$  was played, otherwise play  $(0.5 a_1+0.5 a_3; 0.5 b_1+0.5 b_3)$  <u>Repeated game</u>: G(T=2,  $\delta \in (0;1)$ )

:

Is it possible to construct a conditional strategy, where  $(a_2, b_2)$  is played at the 1<sup>st</sup> period at  $G(T=2,\delta=0.45)$ ?

| No deviation                      |      |   | Deviation |  |
|-----------------------------------|------|---|-----------|--|
| P <sub>1</sub> , P <sub>2</sub> : | 4+3δ | 2 | 5+2δ      |  |

 $\Rightarrow \delta = 1$  critical value of  $\delta$  for which the conditional strategy is SPNE

=> for  $\delta=0.45$  this conditional strategy is not SPNE



<u>Repeated game</u>:  $G(T=\infty, \delta \epsilon(0;1))$ 

:

Find the critical value of  $\delta$  for which this trigger strategy is SPNE.

## Trigger strategy::

- $t=1 play (a_2, b_2)$
- t>1 play  $(a_2, b_2)$  if at (t-1)  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$  forever.

| Stage game |                | $P_2$               |                |                     |
|------------|----------------|---------------------|----------------|---------------------|
|            |                | b <sub>1</sub>      | b <sub>2</sub> | b <sub>3</sub>      |
| D          | a <sub>1</sub> | <u>1</u> ; <u>1</u> | <u>5</u> ; 0   | 0 ;-2               |
| 1          | a <sub>2</sub> | 0 ; <u>5</u>        | 4;4            | -1;0                |
|            | a <sub>3</sub> | -2 ; 0              | 0 ;-1          | <u>3</u> ; <u>3</u> |

## Trigger strategy::

- $t=1 play (a_2, b_2)$
- t>1 play  $(a_2, b_2)$  if at (t-1)  $(a_2, b_2)$  was played, otherwise play  $(a_1, b_1)$  forever.

<u>Repeated game</u>:  $G(T=\infty, \delta \in (0;1))$ 

:

Find the critical value of  $\delta$  for which this trigger strategy is SPNE.

<u>No deviation</u> <u>Deviation</u>  $P_1, P_2: 4/(1-\delta) \ge 5+\delta/(1-\delta)$ 

 $=> \delta ≥ 1/4$  - critical value of δ for which the trigger strategy is SPNE

=> we get better prediction for cooperation than in finitely repeated game.

| <u>Stag</u>      | ge ga          | ame                 |                | $P_2$               | :                   |                     |
|------------------|----------------|---------------------|----------------|---------------------|---------------------|---------------------|
|                  |                | b <sub>1</sub>      | b <sub>2</sub> | $b_3$               | b <sub>4</sub>      | $b_5$               |
| a₁               | 1              | <u>1</u> ; <u>1</u> | <u>5</u> ; 0   | 0 ;-2               | 0;0                 | 0;0                 |
| a <sub>2</sub>   | 2              | 0 ; <u>5</u>        | 4;4            | -1;0                | 0;0                 | 0;0                 |
| P <sub>1</sub> a | 3              | -2 ; 0              | 0 ;-1          | <u>3</u> ; <u>3</u> | 0;0                 | 0;0                 |
| а                | a <sub>4</sub> | 0;0                 | 0;0            | 0;0                 | <u>5</u> ; <u>1</u> | 0;0                 |
| а                | a <sub>5</sub> | 0;0                 | 0;0            | 0;0                 | 0;0                 | <u>1</u> ; <u>5</u> |

 $\frac{\text{Repeated game:}}{G(T=2, \delta \epsilon(0;1))}$ 

Find SPNE where  $(a_2, b_2)$  is played at the 1<sup>st</sup> period. SPNE should sustain renegotiation. Find the critical value of  $\delta$ .



 $\frac{\text{Repeated game:}}{G(T=2, \delta \epsilon(0;1])}$ 

:

# Find all pure strategy SPNE.



 $\frac{\text{Repeated game}}{G(T=\infty, \delta \in (0;1))}$ 

:

Find all pure strategy SPNE.

| Stage game |                |                | $P_2$              |                |
|------------|----------------|----------------|--------------------|----------------|
|            |                | b <sub>1</sub> | b <sub>2</sub>     | b <sub>3</sub> |
| D          | a <sub>1</sub> | 10;10          | 2 ;12              | <b>-1</b> ;13  |
| <b>「</b> 1 | a <sub>2</sub> | 12; 2          | 5 ; <mark>6</mark> | 0;0            |
|            | a <sub>3</sub> | 12; -1         | 0;0                | 1;1            |

 $\frac{\text{Repeated game}}{G(T=2, \delta \epsilon(0;1))}$ 

Find a **pure-strategy** subgame-perfect equilibrium of the repeated game in which the players play  $(a_1,b_1)$  in the first round of the repeated game. Find the critical discount factor to support this strategy as a subgame-perfect equilibrium. Is it possible to support this strategy when  $\delta = 0.59$ ?

Is it possible to support  $(a_1, b_1)$  in the first round of the repeated game using a conditional strategy equilibrium with a mixed-strategy punishment when  $\delta = 0.59$ ?