PředmětyPředměty(verze: 806)
Předmět, akademický rok 2013/2014
   Přihlásit přes CAS
Obecné teorie logických systémů - ALGV00052
Anglický název: General Theories of Logical Systems
Zajišťuje: Katedra logiky (21-KLOG)
Fakulta: Filozofická fakulta
Platnost: od 2013 do 2013
Semestr: letní
Body: 0
E-Kredity: 5
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/0 Zk [hodiny/týden]
Počet míst: neomezen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Úroveň:  
Další informace: http://logika.ff.cuni.cz/predmety/ALGV00052
Garant: doc. Ing. Petr Cintula, Ph.D.
Carles Noguera, Ph.D.
Vyučující: doc. Ing. Petr Cintula, Ph.D.
Carles Noguera, Ph.D.
Rozvrh   Nástěnka   
Anotace - angličtina
Poslední úprava: Mgr. Jonathan Verner, Ph.D. (28.05.2013)

Algebraic logic is the branch of mathematical logic that studies logical systems by giving them algebraic semantics. It mainly capitalizes on the standard Linbenbaum--Tarski proof of completeness of classical logic w.r.t.\ the two-element Boolean algebra, which can be analogously repeated in other logical systems yielding completeness w.r.t.\ other kinds of algebras. {\em Abstract} algebraic logic (AAL) determines what are the essential elements in these proofs and develops an abstract theory of the possible ways in which logical systems can be related to an algebraic counterpart. The usefulness of these methods is witnessed by the fact that the study of many logics, relevant for mathematics, computer science, linguistics or philosophical purposes, has greatly benefited from the algebraic approach, that allows to understand their properties in terms of equivalent algebraic properties of their semantics.

This course is a self-contained introduction to AAL. We start from the very basics of AAL, develop its general and systematical theory and illustrate the results with applications to particular examples of propositional logics.
Literatura - angličtina
Poslední úprava: Mgr. Jonathan Verner, Ph.D. (28.05.2013)

  • Willem J.  Blok and Don L. Pigozzi: Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 396, Providence, RI, USA, 1989, freely downloadable from http://orion.math.iastate.edu/dpigozzi/
  • Petr Cintula and Carles Noguera: A General Framework for Mathematical Fuzzy Logic, Handbook of Mathematical Fuzzy Logic - Volume 1, Studies in Logic, Mathematical Logic and Foundations, vol. 37, Petr Cintula and Petr Hájek and Carles Noguera (eds.), pp. 103-207, College publications, London 2011, Downloadable from http://www.carlesnoguera.cat
  • Janusz Czelakowski: Protoalgebraic Logics, vol. 10 of Trends in Logic. Kluwer, 2001
  • Josep Maria Font, Ramon Jansana, and Don Pigozzi: A survey of Abstract Algebraic LogicStudia Logica, 74(1-2):13-97, 2003

 

Sylabus - angličtina
Poslední úprava: Mgr. Jonathan Verner, Ph.D. (28.05.2013)

  1. Basic notions of algebraic logic: formulae, proofs, logical matrices, filters, closure operators, closure systems, Schmidt Theorem, abstract Lindenbaum Lemma. Completeness theorem w.r.t.\ the class of all models. (Weakly) implicative logics. Examples on substructural and fuzzy logics.
  2. Lindenbaum--Tarski method for weakly implicative logics: Leibniz congruence, reduced matrices, and completeness theorem w.r.t.\ the class of reduced models. Operators on classes of matrices. Relatively (finitely) subdirectly irreducible matrices (RFSI). Completeness theorem w.r.t.\ RFSI reduced models. Algebraizability and order algebraizability. Examples on substructural and fuzzy logics.
  3. Leibniz operator on arbitrary logics. Leibniz hierarchy: protoalgebraic, equivalential and (weakly) algebraizable logics. Regularity and finiteness conditions. Alternative characterizations of the classes in the hierarchy.
  4. Bridge theorems (deduction theorems, Craig interpolation, Beth definability). Generalized disjunctions and proof by cases properties and their role in AAL.
 
Univerzita Karlova | Informační systém UK