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Introduction

● Univariate stationary models: good for descriptive analysis and for forecasting, especially 
short-term forecasting (one period ahead).

● However, many different things can be done with time series! 

– Forecasting at longer horizons  

– Co-movement of variables

– Measurement of the effect of one variable to another.

● With time series data, such analysis is sometimes complicated by serial correlation, and 
because variables affect each other often with a time lag.

● Various approaches: 

● Single equation models (Autoregressive distributed lags model - ARDL, Error correction 
model – ECM, ...)

● Multiple equation models (VAR and VECM); with many extensions.

● This lecture: single equation models.
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Time series regression when 
X and Y are stationary

● Simple OLS   Yt  = a + bXt + ut  does not exploit the time dimension.

● Therefore, let’s start with an autoregressive distributed lag model; ARDL(1,1):

● First and foremost, the estimation of multivariate models depends on whether the series used 
in the analysis (Y

t
, X

t
) are stationary or not.

● Additionally, it is assumed, that both variables in regression are of the same order

➢ Stationary variable X
t
 cannot successfully explain Y

t 
 with unit root.

● In practice, we should pre-test all variables for the existence of unit root prior further analysis, 
and the baseline ARDL models shall be estimated only with stationary variables.

Y t=α+ρ1 Y t−1+β0 X t+β1 X t−1+εt



  

Time series regression when 
X and Y are stationary

● In general, the ARDL models can have many lags, the order is denoted as (p,q). 
Also, infinite-lag modifications exist.

● If all variables are stationary, estimation of the ARDL model (or of regression model with time 
series variables and some arbitrary lags) is easy.

● Lag length usually selected automatically using information criteria.

● The OLS works fine and standard tests such as t-tests and F-tests can be carried out to select 
significant and insignificant variables and to decide about the lag length.

● The ARDL coefficients are used to calculate multipliers:

● The impact multiplier:    

● The long-run multiplier

Y t=α+ρ1Y t−1+...+ρp Y t − p+β0 X t+β1 X t −1+...+βq X t−q+εt

∂Y t
∂ X t

=
β 0

1−Σi=1
p ρ i

∂Y t+∞

∂ X t
=

Σ j=0
q β j

1−Σi=1
p ρ i



  

Nonstationary variables I: 
Spurious regression problem

● In many cases, we study behavior of time-series that are non-stationary.

● Spurious regression problem might arise: if both variables are growing, the OLS finds a strong 
relationship although the variables do not have anything in common.

● Suppose a model

● Even if the true value of the coefficient β=0, the OLS estimate can be non-zero, R2
 
can be high 

and the p-values of test statistics can be low as well.

Y t=α+β X t+u t



  

Nonstationary variables I: 
Spurious regression problem

● In many cases, we study behavior of time-series that are non-stationary.

● Spurious regression problem might arise: if both variables are growing, the OLS finds a strong 
relationship although the variables do not have anything in common.

● Suppose a model

● Even if the true value of the coefficient β=0, the OLS estimate can be non-zero, R2
 
can be high 

and the p-values of test statistics can be low as well.

➔ Consequences of spurious regression

– Slope coefficient β biased.

– The t-statistics are increasing with the size of the sample

– The R2 converges to 1 with T → ∞ => superconsistency

➔ Therefore, you shall be cautious when running a regression of Y on X when both variables 
have unit roots.

Y t=α+β X t+ut



  

Nonstationary variables I: 
Spurious regression problem

● Example: Variables correlated just by coincident

● Two independent RW processes of the same structure

● OLS regression => positive and significant correlation likely, perhaps DW statistics will 
suggest autocorrelation in residuals

● OLS regression on first differences => likely not any significant relationship

set.seed(458)
e1 = rnorm(250)
e2 = rnorm(250)
y1 = cumsum(e1)
y2 = cumsum(e2)
summary(OLS(y1~y2)) summary(OLS(diff(y1)~diff(y2)))
Coefficients Value   Pr(>|t|) Coefficients Value   Pr(>|t|)
(Intercept)  6.7445  0.0000 (Intercept) -0.0565  0.3991
Y2           0.4083  0.0000 diff(y2)     0.0275  0.6683

Regression Diagnostics:
R-Squared 0.2066 R-Squared 0.0007
Adjusted R-Squared 0.2034 Adjusted R-Squared -0.0033
Durbin-Watson Stat 0.0328 Durbin-Watson Stat 1.9356



  

Nonstationary variables I: 
Spurious regression problem

● Another reason for spurious regression: Variables are correlated but not causally related due to a 
presence of a third confounding variable that affects both X and Y.

● Examples:
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● Another reason for spurious regression: Variables are correlated but not causally related due to a 
presence of a third confounding variable that affects both X and Y.

● Examples:

● Ice cream sales and drownings in swimming pools => likely driven by good weather



  

Nonstationary variables I: 
Spurious regression problem

● Another reason for spurious regression: Variables are correlated but not causally related due to a 
presence of a third confounding variable that affects both X and Y.

● Examples:

● Ice cream sales and drownings in swimming pools => likely driven by good weather

● Nominal macro variables => driven by price level (wages, industrial production or 
productivity).



  



  



  



  

Nonstationary variables I: 
Spurious regression problem

How to avoid spurious regression?

1) Avoid data mining (or use the outcomes with care).

2) Use randomized controlled trials or natural experiments to derive causal relationships (not 
always feasible)

3) Be careful about regressions with nonstationary variables and use a methodology that can 
account for cointegration.



  

Nonstationary variables II: Cointegration

● Let's return back to a two-variable regression model with variables of order I(1):

● Assume that their long-term relationship is stable and systemic. Then, if the residuals e
t
 = Y

t
 – 

α – βX
t
 are I(0), we call the pair of series X

t 
and Y

t
 as being cointegrated.

Y t=α+β X t+u t



  

Cointegration and Error Correction

Why is the existence of cointegration interesting?

● It does not arise often: a linear combination of two I(1) series is in general I(1) as well. But 
sometimes, the unit roots in both variables 'cancel each other out'.

● If the time series are cointegrated, the true cointegrating linear combination defines a long run 
equilibrium. The existence of the equilibtium is usually supported by economic theory => 
estimation of cointegration can be used to estimate and evaluate the very existence of 
equilibrium relationships.

● Equilibrium: β1x1t + β2x2t + … + βnxnt = et with E(et) = 0

● The economic variables are not exactly at the equilibrium, so the equilibrium error et appears. 
Nevertheless, they never drift far away as they are always forced back towards it.

● Furthermore, cointegration implies error-correction; that is, the movement of a variable is 
function of its past deviation from the equilibrium, e

t-1 
(Engle and Granger, 1987). 



  

Formal definition

A (n×1) vector time series x
t
 consisting of I(1) series is said to be cointegrated if there exist any 

non-zero vector β such that a linear combination β'x
t
 is stationary I(0).

● The β is refered as cointegrating vector.

● Cointegrating vector is not unique – if β, then λβ as well => β usually normalized to |β|=1.



  

Cointegration and Correlation

Correlation – if one variable moves up, probably the second does the same.

Cointegration – if one variable moves up, the second either does the same or the first decreases 
after some time to keep their long-term relationship stable.

 In fact it means that the two (or more) variables cannot wander off in log term and the deviations 
from their long-term stable relationship are only temporary. 

=> Cointegration indicates more tight relationship between variables than correlation does.



  

Cointegration and Correlation: 
An Illustration
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Examples



  

● Consumption, output and the permanent income hypothesis:

➔

● Since the permanent consumption cP is proportional to permanent income, we can write:

➔

● If the permanent income hypothesis holds, the transitory consumption shall be a linear 
combination of two I(1) variables given by c

t
 – β yP , and it should be stationary.

c t=c t
P+ct

T

c t=β yt
P+c t

T

Example 1



  

Example 2

● Relation among money and real economy: M = kPY => Demand of money

● Take logs, assume k being a function of the interest rate:

● Solving for e
t
:

➔ Linear combination of m
t
, y

t
, r

t, 
p

t
 is supposed to be stationary.

et=mt−β0−β1 pt−β2 y t−β3 r t

mt=β0+β1 pt +β2 y t +β3 r t+e t



  

● Law of one price: The prices of goods expressed in common currency should be identical, so 
the relationship S

t
*P

t;foreign
 = P

t 
should hold at least in the long-term. 

● Deviations of this parity should be temporary (due to arbitrage) => that is, linear combination 
of them should be stationary.

Example 3



  

Other examples

Models of equilibrium exchange rates (exchange rate is supposed to be determined by 
its fundamentals, in particular by net foreign assets, terms of trade and a differential 
in productivity growth).

Growth theory: GDP, C, I

Covered interest rate parity: forward and spot exchange rates

Fisher equation: nominal interest rates and inflation

Term structure of interest rates and the expectations hypothesis: nominal interest rates 
at different maturities

Finance – high-frequency or low-frequency relationships: price of assests at different 
markets; spot and futures prices ; low-frequency: asset prices and fundamentals.



  

Testing cointegration

● First, we introduce the error-correction model (ECM), as for any set of I(1) variables, error 
correction and cointegration are the equivalent representations (the Granger representation 
theorem).

● ECM: dynamic model, movement of variable related to previous period's gap to long-run trend.

● Assume the model          Xt = α0 + α1Xt-1 + β0Yt + β1Yt-1 + εt 

with Xt and Yt both ~ I(1)

● Subtract Xt-1 from both sides of equation and get 

      Xt – Xt-1 = α0 + (α1Xt-1 – Xt-1) + β0Yt + β1Yt-1 + εt 

     ΔXt = α0 + ρ1Xt-1 + β0Yt + β1Yt-1 + εt 



  

Testing cointegration

● First, we introduce the error-correction model (ECM), as for any set of I(1) variables, error 
correction and cointegration are the equivalent representations (the Granger representation 
theorem).

● ECM: dynamic model, movement of variable related to previous period's gap to long-run trend.

● Assume the model          Xt = α0 + α1Xt-1 + β0Yt + β1Yt-1 + εt 

with Xt and Yt both ~ I(1)

● Subtract Xt-1 from both sides of equation and get 

     ΔXt = α0 + ρ1Xt-1 + β0Yt + β1Yt-1 + εt 

● Now add: - β0Yt-1 + β0Yt-1 and rearrange:

     ΔXt = α0 + ρ1Xt-1 + β0Yt – β0 Yt-1 + β0Yt-1 + β1Yt-1 + εt  

     ΔXt = α0 + ρ1Xt-1 + β0 Δ Yt + θ1Yt-1 + ε
t



  

Testing cointegration

● First, we introduce the error-correction model (ECM), as for any set of I(1) variables, error 
correction and cointegration are the equivalent representations (the Granger representation 
theorem).

● ECM: dynamic model, movement of variable related to previous period's gap to long-run trend.

● Assume the model          Xt = α0 + α1Xt-1 + β0Yt + β1Yt-1 + ε 

with Xt and Yt both ~ I(1)

● Subtract Xt-1 from both sides of equation and get 

     ΔXt = α0 + ρ1Xt-1 + β0Yt + β1Yt-1 + εt 

● Now add: - β0Yt-1 + β0Yt-1 and rearrange:

     ΔXt = α0 + ρ1Xt-1 + β0 Δ Yt + θ1Yt-1 + ε
t

● The ECM is then:

               ΔXt = α0 + ρ1(Xt-1 – γYt-1) + β0 Δ Yt  + ε
t

     (Note that when LHS is I(0), Δ Yt is I(0) and if X
t
 and Y

t
 cointegrated, e

t 
must be I(0), too.)



  

Engle-Granger Procedure

 To test the cointegration, we follow the Engle-Granger procedure:

1)Test the order of integration for all variables by ADF

2) Estimate (by OLS) Xt = α0 + β0Yt + et , where Yt is vector of variables, save the residuals e
t 
(the e

t
 

is a candidate for the error correction term).

3) The residuals should be I(0), ADF test with the critical values from Engle-Yoo (1987) is used.

4) Estimate the error-correction model ΔXt = α0 + β Δ Yt + ρet-1+ ut ,                                     
(sometimes lags of ΔXt and Δ Yt needed; et-1 comes from the step 2)

5) Evaluate the model adequacy (the parameter ρ is significant and the value is that the magnitude 
of an error is diminishing over time. Then the parameter ρ can be interpreted as the speed of 
adjustment as the  e

t-1 
is the error correction term.)



  

Drawbacks of the 
Engle-Granger approach

● Low power: cointegration often rejected even when it is present.

● It can be extended for more than two variables, however in this case there can be more than one 
cointegrating relationships – and this situation cannot be treated using this approach



  

Alternatives to the 
Engle-Granger approach

● Single equation models

● Dynamic OLS (DOLS) 

● Autoregressive distributed lags (ARDL)

● Fully modified OLS (FM-OLS)

● Canonical cointegrating regression (CCR)

● Multi-equation models (VECM)



  

Alternatives to the 
Engle-Granger approach

● Single equation models

● Dynamic OLS (DOLS) – follows Stock and Watson (1993)

● Contains leads and lags of first differences of the independent variable
● Number of leads and lags selected using information criteria

● Autoregressive distributed lags (ARDL)

● Fully modified OLS (FM-OLS)

● Cannonical cointegrating regression (CCR)

● Multi-equation models (VECM)

y t=c+β xt+ ∑
i=−p

q

Δ x t+εt



  

Alternatives to the 
Engle-Granger approach

● Single equation models

● Dynamic OLS (DOLS)

● Autoregressive distributed lags (ARDL) 

● Most versatile, even for mixture of I(0) and I(1) variables with some of them 
cointegrated.

● ARDL / Bounds Testing methodology by Pesaran and Shin (1999)

● Δy
t
 = β

0
 + Σ β

i
Δy

t-i
 + Σγ

j
Δx

1t-j
 + Σδ

k
Δx

2t-k
 + φe

t-1
 + ε

t
 

with z
t
 being the error correction term, i.e., residuals from                             

y
t
 = α

0
 + α

1
x

1t
 + α

2
x

2t
 + e

t
 

● Δy
t
 = β

0
 + Σ β

i
Δy

t-i
 + Σγ

j
Δx

1t-j
 + Σδ

k
Δx

2t-k
 + θ

0
y

t-1
 + θ

1
x

1t-1
 + θ

2
 x

2t-1
 + ε

t

● Make sure the residuals are white noise, then F-test on  H
0
:  θ

0
 = θ

1
 = θ

2
 = 0. When 

rejected, cointegration present. Again, non-standard critical values.



  

Time series regression when X and Y are 
non-stationary and non-cointegrated

● Use ARDL or OLS with variables in first differences. That’s it :-)



  

Summary
● We have introduced main principles of multivariate time series analysis within the 

single equation framework.

● We need to care about stationarity. 

– If all variables I(0), ARDL works fine.

● When working with I(1) variables, there is a risk of spurious regression that cannot be 
identified using statistical tests.

● I(1) variables could be cointegrated. Cointegration is a strong, long-term relationship 
among variables. It implies much stronger mutual dependence than correlation.

● It occurs if variables share a common trend or if there is some form of equilibrium 
relationship – as in money demand equation.

– If the I(1) variables are not cointegrated, one should utilize first differences in 
regression models (ARDL).

– If variables are I(1) and cointegrated, OLS in levels (to get long-run 
coefficients – but not s.e.‘s!), Error-correction model, DOLS or ARDL with 
error correction term.

● In all cases, the researcher must be aware of the structure of the model.



  

Readings

• This lecture was based on Koop, G. (2008) Introduction to Econometrics, Ch. 7 with some extensions.

Further reading:
• The Royal Swedish Academy of Sciences (2003): Time Series Econometrics: Cointegration and 

Autoregressive Conditional Heteroscedasticity, downloadable from:
http://www-stat.wharton.upenn.edu/~steele/HoldingPen/NobelPrizeInfo.pdf

• Granger, C. W.J. (2003): Time Series, Cointegration and Applications, Nobel lecture, December 8, 2003, 
downloadable from: http://ideas.repec.org/p/cdl/ucsdec/2004-02.html

• Almost all textbooks cover the introduction to cointegration: Either to Engle-Granger procedure (single 
equation procedure), or to the Johansen multivariate framework. See for example Enders, W.: Applied 
Econometric Time Series (2nd edition).

• Moosa, Imad A. (2017): Blaming suicide on NASA and divorce on margarine: The hazard of using 
cointegration to derive inference on spurious correlation. Applied Economics, 49, 2017.

On ARDL: 

● http://davegiles.blogspot.cz/2013/06/ardl-models-part-ii-bounds-tests.html 

● ARDL with R packages dynamac, ardl 
https://cran.r-project.org/web/packages/dynamac/vignettes/dynamac-vignette.html 
https://search.r-project.org/CRAN/refmans/ARDL/html/ardl.html
https://search.r-project.org/CRAN/refmans/ARDL/html/multipliers.html 

http://www-stat.wharton.upenn.edu/~steele/HoldingPen/NobelPrizeInfo.pdf
http://ideas.repec.org/p/cdl/ucsdec/2004-02.html
http://davegiles.blogspot.cz/2013/06/ardl-models-part-ii-bounds-tests.html
https://cran.r-project.org/web/packages/dynamac/vignettes/dynamac-vignette.html
https://search.r-project.org/CRAN/refmans/ARDL/html/ardl.html
https://search.r-project.org/CRAN/refmans/ARDL/html/multipliers.html
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