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In scientific subjects, the natural remedy for dogmatism has
been found in research. By temperament and training, the
research worker is the antithesis of the pundit. What he
is actively and constantly aware of is his ignorance, not his
knowledge; the insufficiency of his concepts, of the terms and
phrases in which he tries to excogitate his problems: not their
final and exhaustive sufficiency. He is, therefore, usually only
a good teacher for the few who wish to use their mind as a
workshop, rather than a warehouse.

Ronald Aylmer Fisher
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Some Basics First (Quantitative Data)
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Data matrix

The typical organization of the data in many problems in
multivariate analysis is into a data matrix Y, in which

- rows corresponds to different objects (“cases”)

- and columns to different attributes of the data (“variables”)

Example: Track Records for Men

The data give best achieved times by men in various countries,
and various running disciplines

> tram

s1 s2 s4 m8 m15 m50 m100 m421 Country

1 10.39 20.81 46.84 1.81 3.70 14.04 29.36 137.72 argentin

2 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30 australi

3 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90 austria

4 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95 belgium

5 10.28 20.58 45.91 1.80 3.75 14.68 30.55 146.62 bermuda

...

Any graphical representation for this type of data? Well, we could
try (all) just all pairs of coordinate directions...
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...but not like this...
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...but rather like this!
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Some preprocessing of the data may help too

> tram

s1 s2 s4 m8 m15 m50 m100 m421 Country

1 10.39 20.81 46.84 1.81 3.70 14.04 29.36 137.72 argentin

2 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30 australi

3 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90 austria

...

> trackmen = tram[,1:8]

> row.names(trackmen) = tram[,9]

> trackmen

s1 s2 s4 m8 m15 m50 m100 m421

argentin 10.39 20.81 46.84 1.81 3.70 14.04 29.36 137.72

australi 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30

austria 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90

...
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Some more preprocessing perhaps

We often want to center the data: subtract the (corresponding)
column means

> trackmenc = sweep(trackmen,2,apply(trackmen,2,mean))

> apply(trackmenc,2,mean)

s1 s2 s4 m8 m15

-3.552625e-16 1.033536e-15 2.196231e-15 -6.459578e-17 -6.459677e-17

m50 m100 m421

5.167584e-16 7.751770e-16 5.684247e-15

and also scale them: divide by the (corresponding) column
standard deviations

> trackmens = sweep(trackmenc,2,apply(trackmenc,2,sd),"/")

If we center them and subsequently (?) scale them, we will say
that we standardize them

(These are rather trivial modifications, unimportant from the
theoretical point of view, but may play decisive rôle in practical
data analysis)
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Really? (One has to check sometimes...)

> trackmen1 = sweep(trackmen,2,apply(trackmen,2,sd),"/")

> trackmen2 = sweep(trackmen1,2,apply(trackmen1,2,mean))

> trackmens == trackmen2

s1 s2 s4 m8 m15 m50 m100 m421

argentin FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

...

wsamoa TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

What??

> trackmens["wsamoa",] - trackmen2["wsamoa",]

s1 s2 s4 m8 m15 m50 m100 m421

wsamoa 0 2.88658e-15 8.881784e-16 -1.332268e-15 0 -4.440892e-16 2.220446e-15 8.881784e-16

I see...

> round(trackmens["wsamoa",] - trackmen2["wsamoa",],digits=14)

s1 s2 s4 m8 m15 m50 m100 m421

wsamoa 0 0 0 0 0 0 0 0
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Another dataset: electrodes

Various electrodes have been tried successively on arms of
16 subjects. The question whether electrodes have different
characteristics or not.

> read.table("electro.d",header=T,row.names=1)

E1 E2 E3 E4 E5

1 500 400 98 200 250

2 660 600 600 75 310

3 250 370 220 250 220

4 72 140 240 33 54

5 135 300 450 430 70

6 27 84 135 190 180

7 100 50 82 73 78

8 105 180 32 58 32

9 90 180 220 34 64

10 200 290 320 280 135

11 15 45 75 88 80

12 160 200 300 300 220

13 250 400 50 50 92

14 170 310 230 20 150

15 66 1000 1050 280 220

16 107 48 26 45 51

If there were two
electrodes only, we
would just compare
the results on those:
as they may likely for
a given subject be
dependent, we rather
form differences and
then compare those
to zero: paired t-test,
for instance, if we
can assume normal
distribution for the
data
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Covariance arrays of random variables

Suppose that Y and Z are arrays consisting of random variables yI
and zJ, where I and J may be more complex collections of indices
(for instance, if Z is a matrix, then its elements may be zk`. We
can consider Cov(Y, Z) to be the array indexed jointly by I and J,
with the elements Cov(yI,zJ) - the covariance array of Y and Z.

If Y = y = (y1,y2, . . . ,yp)T and Z = z = (z1,z2, . . . ,zq)T are random
vectors, we can conveniently represent the covariance array as a
matrix. The covariance matrix of vectors y and z is defined to be

Cov(y, z) = [Cov(yi,zj)]

=


Cov(y1,z1) Cov(y1,z2) . . . Cov(y1,zq)
Cov(y2,z1) Cov(y2,z2) . . . Cov(y2,zq)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov(yp,z1) Cov(yp,z2) . . . Cov(yp,zq)


where Cov(yk,z`) = E [(yk− E(yk))(z`− E(y`))]

Right from the definition we have Cov(z, y) = Cov(y, z)T

Note: although covariance matrix is conveniently defined in terms
of random vectors, it is only their joint distribution it depends upon
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Sample covariance matrix of two data matrices

Let Y and Z be two data matrices with the same number of rows.
The sample covariance matrix of Y and Z is the matrix cov(Y, Z)
whose element in the k-th row and `-th column is (for all k and `)

cov(Y, Z) =
1

n− 1

∑
i

(yik− ȳk)(zi`− z̄`)

where ȳk = 1
n

∑
iyij and z̄` = 1

n

∑
iyi` are the averages of the

corresponding k-th and `-th columns of Y and Z (replacing the
expected values from the stochastic version)

Note the division by n− 1: while it is the most common choice,
it is not universally accepted (for instance, normal distribution
maximum likelihood theory may suggest division by n).
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Variance-covariance matrix of a random vector

Let y be a random vector, a collection of random variables y1, y2,
. . . , yp. The variance-covariance matrix of y is defined to be

Var(y) = Cov(y, y) = [Cov(yi,yj)]

=


Cov(y1,y1) Cov(y1,y2) . . . Cov(y1,yp)
Cov(y2,y1) Cov(y2,y2) . . . Cov(y2,yp)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov(yp,y1) Cov(yp,y2) . . . Cov(yp,yp)



=


Var(y1) Cov(y1,y2) . . . Cov(y1,yp)

Cov(y2,y1) Var(y2) . . . Cov(y2,yp)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov(yp,y1) Cov(yp,y2) . . . Var(yp)


noting that Cov(yi,yi) = Var(yi) = E

[
(yi− E(yi))

2
]

Note again: the variance-covariance matrix, albeit defined in
terms of random vectors, depends only on their joint distribution.
We could thus speak about “variance-covariance matrix of a
(multivariate) distribution” - but defining it in directly in terms
of this distribution would be tedious
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Matrix notation

In the matrix notation, y is a vector - which we like to be a column
one: y = (y1,y2, . . . ,yp)T, that is

y =


y1

y2

. . .
yp

 and then Var(y) = E[(y − E(y))(y − E(y))T]

In particular, when E(y) = 0, then Var(y) = E[yyT]

This formalism gives a neat way to observe that Var(y) is always
nonnegative definite (or positive semidefinite, if you wish), and also
yields the formula

Var(Ay) = A Var(y)AT

holding true for any (nonrandom, not necessarily square) matrix
A that can be multiplied with y as indicated (that is, it has p
columns). Its special case is the elementary formula

Var(a1y1 +a2y2) = Var(a1y1) + 2 Cov(a1y1,a2y2) + Var(a2y2)

= a2
1 Var(y1) + 2a1a2 Cov(y1,y2) +a

2
2 Var(y2)
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Sample variance-covariance matrix

Analogously, the sample variance-covariance matrix of a data
matrix Y is the sample covariance matrix of Y and Y,

SY = var(Y) = cov(Y, Y)

Right from the definition it follows that this matrix contains the
sample covariance of the k-th and `-th columns of Y in its k-th
row and `-th column (and, for this matter, also in its `-th row and
k-th column)

var(Y) =


s11 s12 . . . s1p

s21 s22 . . . s2p

. . . . . . . . . . . . . . . . . .
sp1 sp2 . . . spp

 =


s2

1 s12 . . . s1p

s21 s2
2 . . . s2p

. . . . . . . . . . . . . . . . .
sp1 sp2 . . . s2

p


Thus, the matrix is symmetric, and also nonnegative definite (some
say: positive semidefinite) - which can be best seen from its matrix
expression
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The compact matrix notation

The centered data matrix is Ỹ = Y −
1

n
11TY.

The (sample) variance-covariance matrix of Y is

SY =
1

n− 1
ỸTỸ =

1

n− 1

(
Y −

1

n
11TY

)T(
Y −

1

n
11TY

)
=

1

n− 1
YT

(
I −

1

n
11T

)T(
I −

1

n
11T

)
Y

=
1

n− 1
YT

(
I −

1

n
11T

)(
I −

1

n
11T

)
Y =

1

n− 1
YT

(
I −

1

n
11T

)
Y

The matrix H = I −
1

n
11T is symmetric and idempotent

- which means that HH = H

Idempotence immediately implies that the matrix is nonnegative
definite - and its rank is equal to its trace: n− 1
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Sample variance-covariance matrix:
transformation theory

For the stochastic version of the variance-covariance matrix, we
have the transformation formula, for any nonrandom A

The transformation theory, including formulation and proof of the
analog of the above formula, for the sample variance-covariance
matrices, working with the (non-random) data matrix Y instead of
the random vector y, and considering the same (non-random) A,
works with1 ...

YA instead of Ay; the corresponding transformation formula is then

Var(YA) = AT Var(Y)A

1Problem 13
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Correlation matrix

The (sample) correlation matrix of Y is

cor(Y) =


ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p

. . . . . . . . . . . . . . . . . .
ρp1 ρp2 . . . ρpp

 =


1 ρ12 . . . ρ1p

ρ21 1 . . . ρ2p

. . . . . . . . . . . . . . . . . .
ρp1 ρp2 . . . 1


where ρk` is the sample correlation coefficient

ρk` =

n∑
i=1

(yik− ȳk)(yi`− ȳ`)

√√√√√√
n∑
i=1

(yik− ȳk)
2
n∑
i=1

(yi`− ȳ`)
2

The sample variance-covariance matrix computed out of the scaled
data is the correlation matrix2

2Problem 15
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Correlation matrix of a random vector

The (stochastic) correlation matrix, Cor(y), of a random vector
y is defined analogously, only the ρk`’s are replaced by stochastic
correlation coefficients

Cov(yk,y`)√
Var(yk)Var(y`)
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Notes on the terminology

Especially in the applied literature, the adjective “sample” is often
omitted; the type of the variance-covariance or covariance matrices
should be decided from the context. As the applications are always
to data, not to random variables, “variance matrix” or “covariance
matrix” in applied literature mostly refer to the sample versions;
should they pertain to random vectors, it might be emphasized by
an adjective “stochastic”

In statistical theory, on the other hand, the sample versions are
viewed as estimates of the “underlying” stochastic ones, using the
“principle of analogy” the data are considered rowwise sampled
from a common distribution; see below. More important than this
motivation is to remember the result: (co)variances Cov(yk,y`)
are replaced by the corresponding sample (co)variances

Also, although we stick here to the “variance-covariance”
terminology, in literature (especially the applied one) they often
say just shortly variance matrix (or sometimes even covariance
matrix), for any of the variants (sample or stochastic) considered
above
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Seeing the Data: A Word on Projections
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Dimensionality problem

We live in dim 3 and see in dim 2

To understand this more:

we may imagine that we live in dim 2 and see in dim 1

(In multivariate analysis we still can see maximally in dim 2
- but live in dim 10, 25, 300, ...)
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Projections on coordinate axes

Are these views interesting?

22



The data revealed
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Even more revealed
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Interesting projection

How to find it?
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General theory

A projection is a specific mapping (and its result) into a (lower-
dimensional) subspace: if Ω is that subspace, then given x, we
seek the element y that minimizes ‖y − x‖ over y ∈Ω

For the Euclidean distance/norm, a neat solution is obtained via
the orthogonal complement Ω⊥ = {u : uTv = 0 for all v ∈Ω}:

if x can be written as x = y + z, where y is in Ω and z in Ω⊥, then
y is the projection of x on Ω

The fact that y is the projection follows from the Pythagoras
theorem - similarly as the fact that no projection increases
norms/lengths

The projection onto Ω as a mapping maps x into the y as defined
above. It is a linear operator, the projection operator, which
is represented by a matrix PΩ; this matrix is symmetric and
idempotent: PΩPΩ = PΩ
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Subspaces via generators

If the subspace Ω to be projected to is given via generating vectors
that form columns of a matrix A - that is, Ω = Im(A), sometimes
denoted also M(A), where

Im(A) = {x : x = Ay for some y}

then the matrix of the projection to Im(A)

PIm(A) = A(ATA)−1AT

Obviously, this works if the matrix ATA is invertible, which happens
if and only if its columns, the generating vectors, are linearly
independent (otherwise, one has to work with pseudo-inverse
matrices instead)
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Pictorial projection

In multivariate data analysis, under “projection” they often mean
“pictorial projection” - especially when it results in a subspace Ω
with dimension p equal 1 and 2. Projection, as defined above,
ends up in a subspace: the projected vectors are in this subspace,
which is a subset of the original vector space

Pictorial projection is what we would see if we identified Ω with a
(p-dimensional) computer screen. This means that the projected
vectors are expressed in terms of the p-dimensional standard basis.
The simplest way of achieving this is to express the projected
vectors in the coördinates given by the generating vectors, columns
of the matrix A considered above; this works best if the generating
vectors form an orthonormal basis
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Pictorial projection: the technology

So, suppose that we are projecting on the subspace generated by
the the columns of a matrix A, which are orthogonal and their
norm is 1. In such case, ATA = I, and the corresponding projecting
matrix (as considered above) is

PIm(A) = A(ATA)−1AT = AAT

While the projection of a vector x on the space generated by the
columns of A is thus AATx, its pictorial projection, its coördinates
in terms of the basis given by the columns of A, is ATx

Compared to the projection matrix AAT, the matrix of the linear
mapping corresponding to the pictorial projection (when A has
orthonormal columns) is

ATPIm(A) = ATAAT = AT
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What you see is what you get?

Pictorial projection into 2-dimensional subspace is supposed to give
what you see in when you look at the projected vectors within that
2-dimensional subspace - what you see on the computer screen if
you project “in that direction”

Thus, if the columns of A are orthogonal, but their norm is
not necessarily 1, the pictorial projection is often considered with
respect to their normalizations - that is, if a is a generating vector,
the pictorial projection coördinates are considered with respect to
a/‖a‖ rather than a itself

Also, it should be kept in mind that R (as well as other software)
often automatically (unless told not to do so) rescales the
coordinates so that the resulting graph nicely fits the usual picture
frame. So you may not see the angles and distances right on a
default picture

Interestingly, obtaining an automatically equiscaled plot is not that
straightforward as, for example, in MATLAB (axis equal) but one
has rather to use a function eqscplot() from the library MASS
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Pictorial projections: dimension 2 to dimension 1

Into the x coordinate - the direction of

(
1
0

)
:

(
x1

x2

)
7→ x1

Into the y coordinate - the direction of

(
0
1

)
:

(
x1

x2

)
7→ x2

Into the direction of

(
1
1

)
:

(
x1

x2

)
7→ x1 + x2 (???)

... not really! we want to adjust the scale!

Projection into the direction of

(
a1

a2

)
- use inner product:

(
x1

x2

)
7→ a1x1 +a2x2, provided the length of

∥∥∥∥(a1

a2

)∥∥∥∥ = 1

∥∥∥∥(a1

a2

)∥∥∥∥ = 1 means
√
a2

1 +a2
2 = 1, equivalent to a2

1 +a2
2 = 1
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Compact matrix notation, general dimension

The pictorial projection of x into the direction of a is:

x 7→ aTx if ‖a‖ = 1

x 7→ aT
0x where a0 =

a

‖a‖
in the general case

For instance, the pictorial projection into the direction of

(
1
1

)
is(

x1

x2

)
7→ x1 + x2√

2

32



Example: a random generator...
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...and a lousy one!
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How was it done: the R code

> data(randu)

> pairs(randu)

> plot(as.matrix(randu) %*%

+ c(cos(pi*(-33.50)/180),sin(pi*(-33.50)/180),0),

+ as.matrix(randu) %*% c(0,0,1),

+ xlab="(cos -33.50,sin -33.50)’(x,y)", ylab="z", pch=16)

Is there an (automatic) way to find interesting projections?
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Digression: Qualitative (Categorical) Data
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Qualitative - discrete variables
Can arise by themselves, or be created by cut() from quantitative.
If we have data recorded by items, we can use table() to create the
cross-tabulated form. Otherwise, data with qualitative variables
often come already in a tabular form.

Example: Hair and eye color and sex in 592 statistics students

> HairEyeColor

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

> class(HairEyeColor)

[1] "table"
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As data frame

The inverse of table() is

> hair=as.data.frame(HairEyeColor)

> hair

Hair Eye Sex Freq

1 Black Brown Male 32 17 Black Brown Female 36

2 Brown Brown Male 53 18 Brown Brown Female 66

3 Red Brown Male 10 19 Red Brown Female 16

4 Blond Brown Male 3 20 Blond Brown Female 4

5 Black Blue Male 11 21 Black Blue Female 9

6 Brown Blue Male 50 22 Brown Blue Female 34

7 Red Blue Male 10 23 Red Blue Female 7

8 Blond Blue Male 30 24 Blond Blue Female 64

9 Black Hazel Male 10 25 Black Hazel Female 5

10 Brown Hazel Male 25 26 Brown Hazel Female 29

11 Red Hazel Male 7 27 Red Hazel Female 7

12 Blond Hazel Male 5 28 Blond Hazel Female 5

13 Black Green Male 3 29 Black Green Female 2

14 Brown Green Male 15 30 Brown Green Female 14

15 Red Green Male 7 31 Red Green Female 7

16 Blond Green Male 8 32 Blond Green Female 8
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Conversion back?

Not table(), but xtabs().

> xtabs(Freq~Hair+Eye+Sex,data=hair) # xtabs(Freq~.,data=hair)

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

We may need (?) to declare the right class: class(.)="table".
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But also “something like” the original data

> hairdat=hair[rep(row.names(hair),hair$Freq),1:3]

> hairdat

Hair Eye Sex

1 Black Brown Male

1.1 Black Brown Male

1.2 Black Brown Male

...

32.6 Blond Green Female

32.7 Blond Green Female

> table(hairdat)

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

...

Red 16 7 7 7

Blond 4 64 5 8
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Plotting

As pie charts, we leave also the “3D histograms” to programs like
Excel. A real statistician uses something else: for instance

> mosaicplot(HairEyeColor, color=c("lightgray","darkgray"))

HairEyeColor

Hair

E
ye

Black Brown Red Blond

B
ro
w
n

B
lu
e

H
az
el

G
re
en
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We can control it

> mosaicplot(HairEyeColor,

+ color=c("lightgray","darkgray"), dir=c("h","v","h"))
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How about eye and hair color aggregated?

That is, among “statisticiens et statisticiennes”...

> haireye=apply(HairEyeColor,1:2,sum)

> haireye

Eye

Hair Brown Blue Hazel Green

Black 68 20 15 5

Brown 119 84 54 29

Red 26 17 14 14

Blond 7 94 10 16

> mosaicplot(haireye, color=c("brown","blue","grey","green"))

And give it nice colors...

Try also:

> mosaicplot(haireye,

+ color=c("brown","blue","grey","green"),cex=1)
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In color

haireye

Hair

E
ye

Black Brown Red Blond

B
ro

w
n

B
lu

e
H
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el

G
re

en

What else we can do?
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Log-linear models
...as a special case of glm(). For frequency data, the distribution is
Poisson; the link is the logarithm function. That is, we construct
a linear model where the response are logarithms of expected
frequences.

We see why we needed to convert the table to the data frame:

> hairglm=glm(Freq~Hair*Eye*Sex,family=poisson, data=hair)

> anova(hairglm,test="Chisq")

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 31 475.12

Hair 3 165.592 28 309.53 < 2e-16 ***

Eye 3 141.272 25 168.25 < 2e-16 ***

Sex 1 1.954 24 166.30 0.16218

Hair:Eye 9 146.444 15 19.86 < 2e-16 ***

Hair:Sex 3 8.093 12 11.76 0.04413 *

Eye:Sex 3 5.002 9 6.76 0.17162

Hair:Eye:Sex 9 6.761 0 0.00 0.66196

Try also summary(hairglm), to see why we prefer anova(hairglm)

here. On the other hand, the problem of anova() is that the p-
values are for incremental composite hypotheses.
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Incremental anova

> hairtwo=glm(Freq~(Hair+Eye+Sex)^2,data=hair,family=poisson)

> hairsp=glm(Freq~Hair+Eye+Sex+Hair:Eye+Hair:Sex,data=hair,family=poisson)

> anova(hairtwo,hairglm,test="Chisq")

...

Model 1: Freq ~ (Hair + Eye + Sex)^2

Model 2: Freq ~ Hair * Eye * Sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 9 6.7613

2 0 0.0000 9 6.7613 0.662

> anova(hairsp,hairglm,test="Chisq")

...

Model 1: Freq ~ Hair + Eye + Sex + Hair:Eye + Hair:Sex

Model 2: Freq ~ Hair * Eye * Sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 12 11.764

2 0 0.000 12 11.764 0.4648

> anova(hairsp,hairtwo,test="Chisq")

...

Model 1: Freq ~ Hair + Eye + Sex + Hair:Eye + Hair:Sex

Model 2: Freq ~ (Hair + Eye + Sex)^2

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 12 11.7637

2 9 6.7613 3 5.0025 0.1716
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Also

> hairind=glm(Freq~Hair+Eye+Sex,family=poisson, data=hair)

> hairnosex=glm(Freq~Hair*Eye+Sex,family=poisson, data=hair)

> anova(hairnosex,hairglm,test="Chisq")

...

Model 1: Freq ~ Hair * Eye + Sex

Model 2: Freq ~ Hair * Eye * Sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 19.857

2 0 0.000 15 19.857 0.1775

> anova(hairind,hairglm,test="Chisq")

...

Model 1: Freq ~ Hair + Eye + Sex

Model 2: Freq ~ Hair * Eye * Sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 24 166.3

2 0 0.0 24 166.3 < 2.2e-16 ***

> anova(hairind,hairnosex,test="Chisq")

...

Model 1: Freq ~ Hair + Eye + Sex

Model 2: Freq ~ Hair * Eye + Sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 24 166.300

2 15 19.857 9 146.44 < 2.2e-16 ***
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Predicted frequences under independence

Let us take predicted values under the additive model—which in the
context of qualitative data means independence:all three variables,
Sex, Color of Hair, and Color of Eyes, are independent.

> hairpr=predict(hairind,type="response")

> xtabs(hairpr~.,cbind(hair[,1:3],hairpr))

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 18.915038 18.485151 7.995903 5.502557

Brown 50.089824 48.951419 21.174335 14.571585

Red 12.434886 12.152275 5.256566 3.617421

Blond 22.242684 21.737168 9.402589 6.470599

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 21.220097 20.737822 8.970314 6.173119

Brown 56.193960 54.916825 23.754719 16.347334

Red 13.950249 13.633198 5.897151 4.058254

Blond 24.953262 24.386142 10.548424 7.259131
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A picture?

> mosaicplot(xtabs(hairpr~.,cbind(hair[,1:3],hairpr)),

+ color=c("lightgray","darkgray"))

xtabs(hairpr ~ ., cbind(hair[, 1:3], hairpr))
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Not that interesting...
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We would rather like to see residuals

> hairr=residuals(hairind,type="response")

> xtabs(hairr~.,cbind(hair[,1:3],hairr))

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 13.0849617 -7.4851511 2.0040974 -2.5025566

Brown 2.9101762 1.0485813 3.8256654 0.4284149

Red -2.4348863 -2.1522753 1.7434344 3.3825785

Blond -19.2426840 8.2628316 -4.4025891 1.5294010

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 14.7799032 -11.7378219 -3.9703136 -4.1731191

Brown 9.8060400 -20.9168246 5.2452805 -2.3473338

Red 2.0497512 -6.6331977 1.1028494 2.9417458

Blond -20.9532620 39.6138576 -5.5484244 0.7408692

> mosaicplot(HairEyeColor, shade=T, margin=list(1,2,3))

> hairlm=loglin(HairEyeColor, list(1, 2, 3))

2 iterations: deviation 5.684342e-14

> pchisq(hairlm$pearson, hairlm$df, lower.tail = FALSE)

[1] 5.320872e-23
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Extended mosaic plot - with shading

The extended mosaic plot shows also the residuals from the log-
linear fit, by shading; the fit is done not by glm(), but using function
loglin(), which is handy when we want to see the result of the χ2

test for independence. We can check that the predictions are the
same:

> haipar=loglin(HairEyeColor,margin=list(1,2,3),para=T)$para

2 iterations: deviation 5.684342e-14

> as.vector(exp(outer(outer(outer(haipar[[1]],haipar[[2]],"+"),

+ haipar[[3]],"+"),haipar[[4]],"+")))

[1] 18.915038 50.089824 12.434886 22.242684 18.485151 48.951419 12.152275

[8] 21.737168 7.995903 21.174335 5.256566 9.402589 5.502557 14.571585

[15] 3.617421 6.470599 21.220097 56.193960 13.950249 24.953262 20.737822

[22] 54.916825 13.633198 24.386142 8.970314 23.754719 5.897151 10.548424

[29] 6.173119 16.347334 4.058254 7.259131
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The plot
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What did we achieve?

We cans see, among other things, that there are more brown-
haired, black-eyed individuals and more blond-haired, blue-eyed
individuals (especially women) among statistics students than the
independence model would suggest. On the other hand, blue-
eyed, black- and brown-haired females are underrepresented. Also
blondes with brown eyes are rare.

A technical detail: the shading in the mosaic plot works not
with “raw” (type="response") residuals, but “Pearson” residuals
(type="pearson")

O− P√
P

O being observed and P predicted frequency
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Check it out

> hairpea=residuals(hairind,type="pearson")

> as.numeric(hairpea)

[1] 3.0086304 0.4111919 -0.6904906 -4.0801117 -1.7409611 0.1498716 -0.6174034 1.7722599

[9] 0.7087370 0.8313848 0.7604218 -1.4357685 -1.0668458 0.1122306 1.7784773 0.6012418

[17] 3.2084695 1.3081238 0.5487950 -4.1945752 -2.5775431 -2.8225591 -1.7964870 8.0218693

[25] -1.3256260 1.0762019 0.4541456 -1.7083462 -1.6796100 -0.5805657 1.4602779 0.2749788

> as.numeric((hair$Freq-hairpr)/sqrt(hairpr))

[1] 3.0086304 0.4111919 -0.6904906 -4.0801117 -1.7409611 0.1498716 -0.6174034 1.7722599

[9] 0.7087370 0.8313848 0.7604218 -1.4357685 -1.0668458 0.1122306 1.7784773 0.6012418

[17] 3.2084695 1.3081238 0.5487950 -4.1945752 -2.5775431 -2.8225591 -1.7964870 8.0218693

[25] -1.3256260 1.0762019 0.4541456 -1.7083462 -1.6796100 -0.5805657 1.4602779 0.2749788

> hairq=as.numeric(cut(hairpea,c(-Inf,-4,-2,0,2,4,Inf)))

> xtabs(hairq~.,cbind(hair[,1:3],hairq))

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 5 3 4 3

Brown 4 4 4 4

Red 3 3 4 4

Blond 1 4 3 4

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 5 2 3 3

Brown 4 2 4 3

Red 4 3 4 4

Blond 1 6 3 4
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Aggregated data give similar result
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> haind=loglin(haireye, list(1, 2))

2 iterations: deviation 0

> pchisq(haind$pearson, haind$df, lower.tail = FALSE)

[1] 2.325287e-25

For qualitative data, it is quite easy to get the hypothesis of
independence rejected... but how to find out more?

55



How to find out more

Log-linear modeling is a way to go; for instance, we can look at the
model that sex is independent conditionally on hair and eye colors.
What does that mean? Color of eyes and hair are dependent, but
there is no dependence between these two and the sex: the chance
of encountering a blue-eye blonde man is given by the proportion
of blue-eyed blondes (man or women) and the proportion of men
about among statistics students

> haicind = loglin(HairEyeColor,margin=list(c(1,2),3))

2 iterations: deviation 5.684342e-14

> pchisq(haicind$pearson, haicind$df, lower.tail = FALSE)

[1] 0.1891745

> mosaicplot(HairEyeColor,margin=list(c(1,2),3),shade=T)

The plot shows that this fits much better; the most of the
discrepancy (pretty much only important from the fitted model) is
due to blonde and blue-eyed men and women.

Lack of dependence ≡ lack of (nonzero) interaction

Another way (other than log-linear modeling) to investigate the
roots of dependence: correspondence analysis (see later)
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Sex vs. hair-eye independence model
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What is the corresponding glm model?
> haircind=glm(formula = Freq ~ Hair*Eye + Sex, family = poisson, data = hair)

> as.numeric(predict(haircind,type="response"))

[1] 32.047297 56.082770 12.253378 3.298986 9.425676 39.587838 8.011824 44.300676 7.069257

[10] 25.449324 6.597973 4.712838 2.356419 13.667230 6.597973 7.540541 35.952703 62.917230

...

> haicpar=loglin(HairEyeColor,margin=list(c(1,2),3),par=T)$param

> as.vector(exp(outer(outer(outer(haicpar[[1]],haicpar[[2]],"+"),

+ haicpar[[3]],"+"),haicpar[[4]],"+")+rep(as.vector(haicpar[[5]]),2)))

[1] 32.047297 56.082770 12.253378 3.298986 9.425676 39.587838 8.011824 44.300676 7.069257

[10] 25.449324 6.597973 4.712838 2.356419 13.667230 6.597973 7.540541 35.952703 62.917230

...

> haircr=residuals(haircind,type="pearson")

> haircq=as.numeric(cut(haircr,c(-Inf,-4,-2,0,2,4,Inf)))

> xtabs(haircq~.,cbind(hair[,1:3],haircq))

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 3 4 4 4

Brown 3 4 3 4

Red 3 4 4 4

Blond 3 2 4 4

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 4 3 3 3

Brown 4 3 4 3

Red 4 3 3 3

Blond 4 5 3 3
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Dimension Reduction for Quantitative Data:
Principal Components
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Something more sophisticated

Principal components: aim at finding the linear combinations (in
fact, projections) showing the data maximally spread

The measure of spread used here is variance: that is, principal
components look for an expression of the data in the alternative
basis of the data space in which the data exhibit maximal
variance(s)

The first definition (equivalent to the current one, by Hotelling)
was given by Pearson (1901). The definitions were fine, but had
to wait 50 years to become computationally feasible!

Note: principal, not principle (principled is a bit different)

Also PC’s, if you wish (I don’t). Guess what PCA stands for...

Also: maximizing variance is equivalent to maximizing its square
root, standard deviation

In more detail:
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The definition of principal components

1. A first principal (component) direction is a unit vector a1,
maximizing the (sample) variance of the projection into its
direction: maximizing s2

Ya1
= aT

1SYa1 under aT
1a1 = 1 (SY = var(Y))

Note: clearly, it is determined uniquely up to a sign

A first principal component is then that projection, Ya1

2. A second principal (component) direction is a unit vector a2,
orthogonal to a1, maximizing the (sample) variance of the
projection into its direction: maximizing s2

Ya2
= aT

2SYa2 under
aT

2a2 = 1 and aT
1a2 = 0

A second principal component is then that projection, Ya2

3. A third principal (component) direction is a unit vector a2,
orthogonal to a1 and a2, maximizing the (sample) variance of the
projection into its direction: maximizing s2

Ya3
= aT

3SYa3 under aT
3a3 =

1 and aT
1a3 = 0, aT

2a3 = 0,

The third principal component is then that projection, Ya3

... and so on, up to... how many? - p principal components
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Let us try it on the male track data
> trackmen.pc <- prcomp(trackmen)

> summary(trackmen.pc)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 9.4823 1.1885 0.50975 0.33079 0.1652 0.11284 0.04737 0.02111

Proportion of Variance 0.9801 0.0154 0.00283 0.00119 0.0003 0.00014 0.00002 0.00000

Cumulative Proportion 0.9801 0.9955 0.99834 0.99953 0.9998 0.99997 1.00000 1.00000

> trackmen.pc

Standard deviations (1, .., p=8):

[1] 9.48227935 1.18853948 0.50974911 0.33078740 0.16522894 0.11283972 0.04736616 0.02110840

Rotation (n x k) = (8 x 8):

PC1 PC2 PC3 PC4 PC5

s1 0.019865407 0.21068958 -0.029041979 0.358784470 0.190181784

s2 0.041554499 0.35892579 -0.018390126 0.833534544 -0.048582165

s4 0.110631838 0.82786251 -0.377669011 -0.396041212 -0.012020033

m8 0.005487699 0.02317490 0.005341591 0.009568087 -0.011107487

m15 0.014386822 0.04465255 0.050004337 0.015981502 -0.043222520

m50 0.079308444 0.12996134 0.336448522 -0.018873808 -0.909186992

m100 0.181098994 0.29885393 0.848722695 -0.134662690 0.364239482

m421 0.972787446 -0.18080736 -0.141872114 0.028425488 0.006575083
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The screeplot
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And possibly also this: the biplot

-0.2 0.0 0.2 0.4

-0
.2

0.
0

0.
2

0.
4

PC1

P
C
2

argentin

australi

austria

belgium

bermuda

brazil

burma

canada
chile

china

columbia

cookis

costa

czech

denmark

domrep

finland

francegdr

frg

gbni

greece

guatemal

hungary
india

indonesi

ireland

israel

italy

japan

kenya

korea

dprkorea

luxembou

malaysia

mauritiu

mexico

netherla

nz
norway

png

philippipoland

portugal

rumania

singapor

spain
swedenswitzerl

taipei
thailand

turkey

usa
ussr

wsamoa

-40 -20 0 20 40 60

-4
0

-2
0

0
20

40
60

s1s2
s4

m8m15m50m100 m421

> biplot(trackmen.pc)
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Two functions in R: prcomp() and princomp()

They return quite similar results, but there are also differences

We have just seen prcomp(); now princomp()

> trackmen.pc2 <- princomp(trackmen)

> trackmen.pc2$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

s1 0.211 0.359 0.190 0.887

s2 0.359 0.834 -0.410

s4 0.111 0.828 0.378 -0.396

m8 0.261 -0.965

m15 0.959 0.262

m50 0.130 -0.336 -0.909 0.184

m100 0.181 0.299 -0.849 -0.135 0.364

m421 0.973 -0.181 0.142

...

“Loadings” = principal component directions
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Principal components: computation I3

Principal components can be obtained via eigenvector-eigenvalue
decomposition applied to the variance-covariance matrix (or, in
scaled case, correlation matrix). Principal component directions
are given by the eigenvectors; eigenvalues give the variance of the
principal component. This is what R function princomp() does

Note that this method of computation does not require the
knowledge of the original dataset; principal components can
be computed merely from the variance-covariance or correlation
matrix - and it is indeed possible in princomp() to do it this way

If princomp() uses the original data, it computes the variance-
covariance matrix first, and then applies the eigenvector-eigenvalue
decomposition to this matrix

3See Problem 8 for the technical details
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Principal components: computation II4

Another way is to avoid the computation of the variance-covariance
or correlation matrix and compute principal components directly by
applying singular value decomposition (SVD) to the centered data
matrix, the data matrix with column averages equal to zero

Ỹ = Y −
1

n
11TY

This is how it is done by the R function prcomp()

It is also reason why many applied sources don’t refer explicitly
to the method as “principal components” but rather speak about
“applying SVD to the data matrix”

Note, however (important!): if the data matrix not centered,
principal components won’t result

4See Problem 20 for the technical details
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Principal components: issues

Remember: principal components do change after changing
the scale of variables (not after shift and rotation/orthogonal
transformation, however) - and do not change in a way we’d like
to see (= they are not equivariant)

Note: computing principal components out of the original data
(that is: out of the variance-covariance matrix) often results merely
in emphasizing the “size factor” - as we have seen on the example
above

Thus, to mitigate the just mentioned drawback, it may be
preferable to compute principal components from the scaled data:
we subtract the means of the columns of Y from the corresponding
columns (obtaining the centered data matrix Ỹ), and then we also
divide those columns by their corresponding standard deviations

Computing principal components out of the variance-covariance
matrix of the standardized data is equivalent to computing them
directly out of the correlation matrix

Principal components are rather sensitive to outliers (that is, they
are in general not robust)
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Principal components: pseudo-issues

Of course, everything above can become controversial from the
purely mathematical point: if two eigenvalues coincide, then any
linear combination of the corresponding eigenvectors is again an
eigenvector for this particular eigenvalues, and we are running
into mathematical difficulties: principal directions are defined
ambiguously (and not just up to the sign)

However, this kind of difficulty may be quite ignored from the
practical point of view: for the real-world data, the data that are
in general position, the exact equality of eigenvalues never occurs

On the other hand though, some underlying spherical structure
may still wreak havoc the analysis: for instance, if the data are
sampled from a perfect sphere, then eigenvalues will be different
and principal directions therefore unique, but a small perturbation
of the input may change the results dramatically. One thus has
to be on alert regarding the effects of this kind: the ambiguity in
perfect mathematical setting typically translates to an unstability,
in the setting that is numerically approximate
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Principal components: pseudo-issues continued

In a similar fashion, it is very rare to encounter an eigenvalue exactly
equal to 0. Such an eigenvalue in mathematical setting means
degeneracy, data being concentrated on an affine subspace, one
variable typically being a linear or affine combination of others.
This can create problems in some other analyses, but in the
eigenvalue context, it just demonstrates itself by an eigenvalue
that is very small

This can be illustrated on a small experiment in R with the male
track data. Adding a variable which is the sum of all other
variables to the dataset certainly creates degeneracy; the variance-
covariance matrix will be singular, not invertible

> solve(var(cbind(trackmen,apply(trackmen,1,sum))))

Error in solve.default(var(cbind(trackmen, apply(trackmen, 1, sum)))) :

system is computationally singular: reciprocal condition number = 4.53665e-18

Nonetheless, the eigenvalue decomposition, and subsequently the
algorithms for principal components will proceed through:
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Indeed

> eigen(var(cbind(trackmen,apply(trackmen,1,sum))))

eigen() decomposition

$values

[1] 2.754561e+02 2.783394e+00 2.784531e-01 1.170712e-01 2.815015e-02 1.313185e-02 2.607990e-03 4.687135e-04 6.143534e-15

...

> princomp(cbind(trackmen,apply(trackmen,1,sum)))

Call:

princomp(x = cbind(trackmen, apply(trackmen, 1, sum)))

Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

1.644530e+01 1.653114e+00 5.228674e-01 3.390319e-01 1.662478e-01 1.135477e-01 5.060210e-02 2.145207e-02 7.416130e-08

9 variables and 55 observations.

> prcomp(cbind(trackmen,apply(trackmen,1,sum)))

Standard deviations (1, .., p=9):

[1] 1.659687e+01 1.668351e+00 5.276866e-01 3.421567e-01 1.677801e-01 1.145943e-01 5.106849e-02 2.164979e-02 4.597450e-15

...

Thus, when doing mathematics of principal components and
related concepts, it is pretty much safe (“without loss of
generality”) to assume the data in general position, translating
to all eigenvalues being positive and distinct
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Principal components: uses

Overall, one can use of principal components to condense the
information in the data - to reduce the dimension: we retain only
certain number of the (initial) principal components

This number can be specified in advance (for instance, in
information transmission), or one can be guided by the size of
variance: the ratio of a variance to the sum of all variances gives
“proportion of variance explained”. A closely-related indicator
is the “cumulative proportion of variance explained”; standard
deviations are used too. A graphical tool to facilitate this, showing
maximized variance (or standard deviation) for each principal
component, is called screeplot

Another potential use: finding interesting projections of the data
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Like this

> trackmen.pcs = prcomp(trackmen,scale=TRUE)

> summary(trackmen.pcs)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 2.5734 0.9368 0.39915 0.35221 0.28263 0.2607 0.2155 0.15033

Proportion of Variance 0.8278 0.1097 0.01992 0.01551 0.00999 0.0085 0.0058 0.00283

Cumulative Proportion 0.8278 0.9375 0.95739 0.97289 0.98288 0.9914 0.9972 1.00000

Same as

> trackmen.pcs = prcomp(scale(trackmen))

> summary(trackmen.pcs)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 2.5734 0.9368 0.39915 0.35221 0.28263 0.2607 0.2155 0.15033

Proportion of Variance 0.8278 0.1097 0.01992 0.01551 0.00999 0.0085 0.0058 0.00283

Cumulative Proportion 0.8278 0.9375 0.95739 0.97289 0.98288 0.9914 0.9972 1.00000
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So, another screeplot
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> plot(trackmen.pcs)
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We may plot the first two components now
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> plot(predict(trackmen.pcs),pch=16)
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With some additional information perhaps
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> plot(predict(trackmen.pcs),pch=16)
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And look more into them

> trackmen.pcs

Standard deviations (1, .., p=8):

[1] 2.5733531 0.9368128 0.3991505 0.3522065 0.2826310 0.2607013 0.2154519

[8] 0.1503333

Rotation (n x k) = (8 x 8):

PC1 PC2 PC3 PC4 PC5 PC6

s1 0.3175565 0.56687750 0.3322620 -0.12762827 0.2625555 -0.5937042

s2 0.3369792 0.46162589 0.3606567 0.25911576 -0.1539571 0.6561367

s4 0.3556454 0.24827331 -0.5604674 -0.65234077 -0.2183229 0.1566252

m8 0.3686841 0.01242993 -0.5324823 0.47999895 0.5400528 -0.0146918

m15 0.3728099 -0.13979665 -0.1534427 0.40451039 -0.4877151 -0.1578430

m50 0.3643741 -0.31203045 0.1897643 -0.02958755 -0.2539792 -0.1412987

m100 0.3667726 -0.30685985 0.1817517 -0.08006862 -0.1331764 -0.2190168

m421 0.3419261 -0.43896267 0.2632087 -0.29951213 0.4979283 0.3152849
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Arguably, equiscaled plot is more appropriate
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> library(MASS)

> eqscplot(predict(trackmen.pcs)[,1:2],pch=16)
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A potential half-way: orthonormal components
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> library(MASS)

> eqscplot(sweep(predict(trackmen.pcs)[,1:2],2,

+ trackmen.pcs$sdev[1:2],"/"),pch=16)}
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But usually we rather use a biplot
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> biplot(trackmen.pcs) originally equiscaled...
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But usually we rather use a biplot
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> biplot(trackmen.pcs,xlim=c(-0.23,0.57))

...then somewhat rescaled for aesthetic reasons
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Biplots of principal components

Biplots handle very well the situation when the first two principal
components are plotted (which is often the case)

What is there in “bi”? First, we plot the principal components,
the 2-element vectors formed by the corresponding elements of Ya1

and Ya2. They correspond to the rows of the original data matrix,
which implies their possible labels

The we also plot the 2-element vectors formed by corresponding
elements of a1 and a2 - to distinguish them from the previously
plotted points, we use arrows. These arrows correspond to the
columns of the original data matrix, the variables

Some rescaling has usually to take place, so that we can see how
the first two principal components relate to the original variables
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Check it out: first, some look into the R output

> attributes(trackmen.pcs)

$names

[1] "sdev" "rotation" "center" "scale" "x"

$class

[1] "prcomp"

> trackmen.pcs$rotation

PC1 PC2 PC3 PC4 PC5 PC6

s1 0.3175565 0.56687750 0.3322620 -0.12762827 0.2625555 -0.5937042

s2 0.3369792 0.46162589 0.3606567 0.25911576 -0.1539571 0.6561367

s4 0.3556454 0.24827331 -0.5604674 -0.65234077 -0.2183229 0.1566252

m8 0.3686841 0.01242993 -0.5324823 0.47999895 0.5400528 -0.0146918

m15 0.3728099 -0.13979665 -0.1534427 0.40451039 -0.4877151 -0.1578430

m50 0.3643741 -0.31203045 0.1897643 -0.02958755 -0.2539792 -0.1412987

m100 0.3667726 -0.30685985 0.1817517 -0.08006862 -0.1331764 -0.2190168

m421 0.3419261 -0.43896267 0.2632087 -0.29951213 0.4979283 0.3152849

> plot(predict(trackmen.pcs))

> arrows(0,0,trackmen.pcs$rotation[,1],trackmen.pcs$rotation[,2])

It is not really it yet - but after some rescaling...
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Pretty close, right?
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> plot(predict(trackmen.pcs))

> arrows(0,0,8.5*trackmen.pcs$rotation[,1],

+ 1.2*trackmen.pcs$rotation[,2],col="red")
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Compare to the (somewhat edited) R own
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Principal components: summary

Principal components are projections with maximal spread, the
projections that maximize the variance in the given direction
- the more precise sense is given above. This may reveal
interesting projection(s) (although arguably, there may be also
more interesting ones)

The original definition of Pearson (1901) used line fitting via
least squares minimizing orthogonal distances: the first principal
component would be the projection of the datapoints in the
direction of the line giving the best orthogonal regression fit
to the data points (the sum of squared geometric (orthogonal)
distances of points to the line is minimal). In other words, first
principal component consists of projections of datapoints giving
best orthogonal fit of the data.

The best fit of this type should pass through the mean; hence it
is reasonable to consider centered datapoints yi− ȳ.

Subsequent principal components would be defined by analogous
fitting in the directions orthogonal to those of previous ones
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Principal components: stochastic underpinning
(population principal components)?

As defined above, principal components computed out of the data
as indicated above may appear as a purely data-analytic method,
a method requiring no stochastic underpinning.

To a large extent it is so; however, if we assume that the data
are sampled from a certain distribution, then it is possible to
define principal directions in an analogous way out of the variance-
covariance or correlation matrix of this distribution

That is, var(Ya) is replaced by Var(aTy), where y is a random
vector. Singular value decomposition strategy is not available
here, but we can still do the eigenvalue decomposition of
the stochastic variance-covariance matrix Var(y), to obtain the
pertinent solutions.

If the lines of the data matrix Y are then considered to be
independently sampled from the distribution of y, then the principal
components computed out of Y can be considered “sample
principal components” - estimates of the previous stochastic
(“population”) principal components
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Ramifications

It is important to understand the definition of principal
components, because there are quite a few other procedures that
elaborate on their idea. Some of them are:

- common principal components

- principal curves and surfaces
(Pearson: the first principal component is the orthogonal
regression fit to the data)

- self-organized mappings (Kohonen)

- independent component analysis (ICA)
(note: principal components are uncorrelated)

- partial least squares (PLS)
(“principal components of the regressors with view on a
response”)

- projection pursuit
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More about dimension reduction in regression

We have a linear regression (univariate response)

y ∼ Xβ (or, if you wish, ŷ = Xβ)

This is nice for general theory, but in practice it is useful to separate
intercept out of X (we will abuse the notation and denote the new
matrix also by X)

y ∼ 1α+ Xβ

We may assume y, X centered (otherwise the parameters transform
how?) That is, the average of the elements of y is 0, as well as
the averages of the all columns of X. (Then, if we are doing the
least-squares fit, the coefficient α would be 0)

We can also assume the columns of X scaled (otherwise we may
again transform the fitted parameters in the appropriate way)

But X may have way too many columns; we would like to use fewer
of those...
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Principal component regression

We compute principal components Z out of X and retain only
first m of those, Zm

y ∼ 1α+ Zmγ

Now, we know that the columns of Zm are orthogonal - when the
fitting criterion is least squares, we obtain the solution by solving
m univariate regressions

y zjγj

Of course, when M = p, that is, we use all principal components,
we get only the solution of the original regression, nothing new

The just described strategy was and is used, with possible
advantages and drawbacks. Rather than going into those, let us
mention one fact: principal components do not care about y; for
every y they are the same. This leads to the method of partial
least squares
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Partial least squares (PLS)

Partial least squares are “principal components for regression”.
This is best seen from the following analogy

Principal component directions am are found via maximizing

var(Xam) subject to ‖am‖ = 1 and

aT
mak = 0 for all k = 1, 2, . . . ,m− 1

The last condition can be rewritten so that the definition is

var(Xam) subject to ‖am‖ = 1 and

aT
mSXak = 0 for all k = 1, 2, . . . ,m− 1

where SX = var(X) is the variance-covariance matrix of X

Now, partial least squares directions bm are found via maximizing

(cor(y, Xbm))
2 var(Xbm) subject to ‖bm‖ = 1 and

bT
mSXbk = 0 for all k = 1, 2, . . . ,m− 1

In practical applications, only some small number of directions is
used, like in principal components. However, the algorithm for
partial least squares is sequential
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Projection pursuit

Named by Friedman and Tukey (Kruskal considered earlier under
different name). Evolved from “Grand Tour” - a technique
that “traveled all” directions to find those yielding interesting
projections.

The objective is to find the directions giving most interesting
projections of the data. Deemed to be those maximizing some
projection index.

While principal components are also a kind of projection pursuit,
this kind of projection is not considered that interesting here.
Hence the datapoints are first scaled so that their covariance
matrix is identity: sphering. This is equivalent to transforming
to principal components (the original ones, computed from the
covariance matrix, after subtracting the mean) and then scaling to
unit variance (dividing by square root of eigenvalues).

The projections of interest are one- and two-dimensional. There
are several indices, mostly quantifying a degree of deviation from
normality as a measure of interestingness. Thus, the computation
of the index often involves the estimation of the density of projected
points.
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Examples of projection indices

Indices assessing “non-uniformity” (uniform = uninteresting)

entropy

∫
f log f

Indices assessing “non-normality” (normal = uninteresting)

skewness and curtosis

variations of L2 deviation from normality∫
(f−ϕ)2/2ϕ

∫
(f−ϕ)2

∫
(f−ϕ)2ϕ

Indices finding “holes” in the data

Indices finding clusters in the data

(the above rather superimpose them)
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Technical details

Computing involves some kind of numerical minimization.

Once an interesting projection is find, there is a need to perform
a structure removal before finding another one. The structural
removal can be accomplished, for instance, by transforming to
normality in the selected projection

Limitations:

Still somewhat in development (that is, was 20 years ago)

The opinions on various indices differ

Computationally demanding, needs sophisticated optimization
methods (many local maxima)

Practical impact?
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Reducing Dimension of Hidden causes:
Factor Analysis
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Preamble

Attempts of interpreting principal components may lead to the
entities with their own lives: factors

It is something like retaining k principal components and
interpreting those -

- but beware: the process will be different, and the results - unlike
principal components! - will be equivariant with respect to rescaling

The name of the technique (or bundle of techniques) is factor
analysis, and it can be approached from several viewpoints - one
of them is: a sort of reading from the variance-covariance matrix
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Motivation: principal components

Recall: we have the data matrix Y, and we decompose its variance-
covariance matrix SY = UΛUT.

The principal component directions are columns of U:(
a1 a2 . . . ap

)
=
(
u1 u2 . . . up

)
= U

Principal components are the projections into those directions:

C =
(
c1 c2 . . . cp

)
=
(
Yu1 Yu2 . . . Yup

)
= YU.

That is, principal components are expressed as linear combinations
of the original variables - the columns of Y:

c11 . . . c1p

c21 . . . c2p

. . . . . . . . . . . . .
cn1 . . . cnp

 =


y11 . . . y1p

y21 . . . y2p

. . . . . . . . . . . . . .
yn1 . . . ynp



u11 . . . u1p

u21 . . . u2p

. . . . . . . . . . . . . .
up1 . . . upp


This is all standard, nothing new here.
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Principal components inverted

We may invert the relationship YU = C: express the original
variables as linear combinations of principal components. It should
not be a problem, because U−1 = UT.

Y = CUT =
(
c1 . . . cp

)uT
1

. . .
uT
p

 = c1uT
1 + · · ·+ cpuT

p

However, we usually want only few first principal components
(reduction of the information)

Y = c1uT
1 + · · ·+ cmuT

m+ cm+1uT
m+1 + · · ·+ cpuT

p

= c1uT
1 + · · ·+ cmuT

m+ E = CmUT
m+ E

This sets the motivation of the factor analysis model. Before
proceeding to it, however, we have to address a technicality:
centering
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Centering

Return to the equation
c11 . . . c1p

c21 . . . c2p

. . . . . . . . . . . . .
cn1 . . . cnp

 =


y11 . . . y1p

y21 . . . y2p

. . . . . . . . . . . . . .
yn1 . . . ynp



u11 . . . u1p

u21 . . . u2p

. . . . . . . . . . . . . .
up1 . . . upp


Taking means columnwise shows that(
c̄1 . . . c̄p

)
=
(
ȳ1 . . . ȳp

)
U, that is, c̄T = ȳTU.

In plain language: means projects onto means. Hence, if we take
Y centered - instead of Y we consider Ỹ = Y − 1ȳT, obtained by
subtracting the column means from Y, then the column means of
C are zeros - as are those of Ỹ (and everything is all right).

Instead of

Y = CmUT
m+ D

we may assume that Cm is centered and write instead

Ỹ = CmUT
m+ D
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Factor model - attempting a purely sample form

All the above could lead to a hypothetic factor model

Ỹ = CmUT
m+ D where Ỹ = Y − 1ȳT,

and 1 is the n×1 column of ones; we could call the n×m matrix
Cm the matrix of (common) factors (columns of Cm), and D would
be the n× p matrix of specific factors.

We may also write

Y − 1ȳT = CmUT
m+ D

and it may be instructive to write it in components; if, say, m = 2,
then the i-th variable, the i-th column of Y, is

y1i

y2i

. . .
yni

 =


ȳi
ȳi
. . .
ȳi

+


c11 c12

c21 c22

. . .
cn1 cn2

(ui1ui2
)
+


d1i

d2i

. . .
dni


that is, yi− ȳi1 = Cmui+ di (di being the columns of D)

and together all i = 1, 2, . . . ,p give the matrix form above.
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An attempt at assumptions

Note that although it looks like a regression model, the difference
is that both Cm and Um are unobserved. Having that many
unobserved quantities brings a lot of ambiguity (nonuniqueness
of solutions); to alleviate at least some of that, we require

the columns of Cm to have

zero mean and unit standard deviation

are uncorrelated with the columns of D

are uncorrelated among themselves (however: sometimes not)

and the columns of D to have zero mean...

...but when we would like to postulate that the columns of E to be
uncorrelated, then in general this will neither be true nor feasible

SO THIS IS NOT A SUCCESS: NOT A WAY TO GO

NOT A SUITABLE MODEL FOR FACTOR ANALYSIS

(Only a perhaps illuminating motivation)
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This is not a model; so what is?

Note: unlike for principal components (and later for canonical
correlations), where we did not feel a need for any underlying
stochastic model -

in factor analysis we have to start with the corresponding
stochastic, “population” model instead (that is, we have to
introduce underlying distribution from which our data are sampled
from, represented by random variables and make assumptions
about them) - and then the results of factor analysis will estimates
of the parameters of the stochastic model

So “forget” the above, and start to think from scratch in terms of
random variables (vectors)
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Independent, identically distributed (iid) sampling

The first part of the model, the independent random sampling
paradigm, will be invoked also in many other techniques - it is not
exclusive to factor analysis

We say that the data matrix Y arises via iid sampling, if its
lines can be viewed as outcomes of an independent random
vectors (independent between themselves, but not necessarily with
independent components) yi (or yT

i , if you wish), all with the same
distribution

- which for notational and other convenience we may sometimes
view as the distribution of some generic random vector y, with the
same dimension as all yi

For instance, the componentwise expected value of all yi is
conveniently expressed via formula µ = E(y)

For Y arising by iid sampling, the models for factor analysis come
in two varieties, two forms: predictive (regression) factor model
(called also orthogonal factor form, to emphasize the fact that
factors are assumed uncorrelated) and the variance-covariance
factor model.
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Predictive (regression) factor model

It is assumed that y −µ = Lf + e where

y is a p× 1 random vector

L is p×m matrix of fixed, but unknown loadings

f is an m× 1 random vector of common factors

and e is a p× 1 random vector e of specific factors

all random quantities involved have zero expectation

E(f) = 0, E(e) = 0

and all are uncorrelated:

Cov(f, e) = O

the components of f with the components of e

Var(f) = I

the components of f among themselves - and also have unit
variance; however, while the components of e are also uncorrelated
among themselves, their variance is not restricted

Var(e) is a diagonal matrix Ψ (not necessarily equal to I)
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Rotations

Although factor model looks pretty much like a regression model,
be aware of the fact that it is essentially different: both f and L
are unobserved here (in regression, we would know f)

Also, the e’s should be viewed as “specific factors” rather than
“errors”, although the similarity here is close

Having that many unobserved quantities in a model brings a great
deal of ambiquity (nonuniqueness), despite the moment restrictions
in the assumptions. Inserting I = AAT, where A is any orthogonal
matrix, in the factor model

y = µ+ Lf + e we obtain

y = µ+ Lf + e = µ+ LIf + e = µ+ (LA)(ATf) + e

which yields a new model, equivalent to the previous one, and
satisfying all the assumptions - a model with the new factors ATf
and the new loadings LA

Hence, the model description in factor analysis should be viewed
not as a single model, but rather as an equivalence class of models5

5See also Problem 24
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Rotations: aiding and abetting interpretation

The just demonstrated ambiguity may not be essential when we
think just about reducing dimension for predicting y; but once
interpretation of the common factors is desired, some equivalent
versions may be more insightful than the other

Thus, we have seen that once we have some solution, some
estimates/predictions of the components of the predictive model,
other possible versions of the solution can be obtained by rotation:
a transformation represented by an orthogonal matrix A

In factor analysis, a fortuitous choice of A may improve
the interpretability of the resulting factor model (“the art of
rotations”)

The choice of A can be a result of interpreter’s skill and experience;
there exist also ways of arriving to suitable rotations algorithmically
- the specific proposals are referred to under names like varimax,
quartimax, equamax, parsimax, varimin, entropy, mccammon,... (see R
package GPArotation)
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A favorite one: varimax

Good rotations are often considered to be those giving as much
zeros as possible in the loadings. A popular one known to behave
favorably in this respect, a default in many implementations, is the
rotation called varimax

(varimax = variance max imal)

To achieve sparse loadings, the loadings with many zeros, varimax

maximizes, over all orthogonal A, the criterion expressed in terms
of the elements `ij of the matrix L of rotated loadings

m∑
j=1

(
p∑
i=1

(`2
ij−

1

p

p∑
i=1

`2
ij)

2

)
=

m∑
j=1

(
p∑
i=1

`4
ij−

1

p
(

p∑
i=1

`2
ij)

2

)

The maximization is achieved via an iterative algorithm
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Consumer preference data: chocolate bars

In a consumer preference study, a random sample of consumers
were asked to rate several attributes of a new product. The
responses, on a 7-point semantic differential scale, were tabulated
and the attribute correlation matrix constructed.

> cons

Taste Money Flavor Snack Energy

Taste 1.00 0.02 0.96 0.42 0.01

Good buy for money 0.02 1.00 0.13 0.71 0.85

Flavor 0.96 0.13 1.00 0.50 0.11

Suitable for snack 0.42 0.71 0.50 1.00 0.79

Provides lots of energy 0.01 0.85 0.11 0.79 1.00

> princomp(covmat=cons)

Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

1.6891094 1.3439987 0.4522060 0.3200148 0.1835141

> plot(princomp(covmat=cons))
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Consumer preference data: chocolate bars

First two components summarize data quite well:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

princomp(covmat = cons)
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Principal components revisited
As we know only the correlation matrix, the correct computation is:
> eigen(cons)$values

[1] 2.85309042 1.80633245 0.20449022 0.10240947 0.03367744

> princomp(covmat=cons)$sdev^2

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

2.85309042 1.80633245 0.20449022 0.10240947 0.03367744

Other ways may give various dubious (and wrong!) results:

> prcomp(cons)$sdev^2

[1] 8.371054e-01 3.307840e-02 5.509727e-03 5.964502e-04 6.841399e-34

> prcomp(cons,scale=T)$sdev^2

[1] 4.533917e+00 4.345533e-01 2.799983e-02 3.530248e-03 6.059843e-33

> princomp(cons,cor=T)$sdev^2

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

4.533916642 0.434553284 0.027999826 0.003530248 0.000000000

> eigen(cor(cons))$values

[1] 4.533917e+00 4.345533e-01 2.799983e-02 3.530248e-03 1.201875e-16

> eigen(var(cons))$values

[1] 8.371054e-01 3.307840e-02 5.509727e-03 5.964502e-04 -1.594915e-17

> eigen(var(cons)*4/5)$values

[1] 6.696843e-01 2.646272e-02 4.407781e-03 4.771602e-04 9.421876e-17

> princomp(cons)$sdev^2

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

0.6696843389 0.0264627197 0.0044077813 0.0004771602 0.0000000000

110



Factor analysis of consumer preferences

> factanal(cov=cons,factors=2,rotation="none")

Uniquenesses:

[1] 0.028 0.237 0.040 0.168 0.052

Loadings:

Factor1 Factor2

[1,] 0.976 -0.139

[2,] 0.150 0.860

[3,] 0.979

[4,] 0.535 0.738

[5,] 0.146 0.963

Now, let us try some rotation, to see whether we can transform
the result by a suitable rotation to obtain better interpretation
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Varimax

> fcp = factanal(cov=cons,factors=2,rotation="varimax")

Uniquenesses:

[1] 0.028 0.237 0.040 0.168 0.052

Loadings:

Factor1 Factor2

[1,] 0.985

[2,] 0.873

[3,] 0.131 0.971

[4,] 0.817 0.405

[5,] 0.973
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How about a plot?

> plot(loadings(fcp),xlim=c(-0.2,1.2),ylim=c(-0.2,1.2),cex=2,pch=16)

> text(loadings(fcp)-c(0.1,0.1,0,0.1,0,0,0,0.1,0,0.1),

+ labels=dimnames(cons)[[2]],cex=1.2)
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Plotting of variance-covariance matrices

We may plot also original and permuted (1,3,2,4,5) correlation
matrix: (hint: use image())
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In fact, it is all about variance-covariance matrix

The orthogonal factor analysis model in the regression form has
consequences for the variance-covariance matrix of the random
vector with underlying distribution. Recall the formula

Var(y) = E[(y −µ)(y −µ)T)]

The factor model says that y −µ = Lf + e. This yields

Var(y) = E[(Lf + e)(fTLT + eT)]

= L E(ffT)LT + L E(feT) + E(efT)LT + E(eeT)

and, because E(f) = 0, E(e) = 0

= L Var(f)LT + L Cov(f, e) + Cov(e, f)LT + Var(e)

= L Var(f)LT +Ψ = LLT +Ψ

using that Var(f) = I and Cov(f, e) is a zero matrix

In a similar way, we obtain that Cov(y, f) = L6

6Problem 25
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Variance-covariance factor model

Thus, the orthogonal factor model in the regression form implies
the following (orthogonal) factor model for the variance-covariance
matrix:

The components L, f, and e are the same, assumed to have the
same stochastic or deterministic character as in the predictive
regression model

and it is assumed that

Var(y) = LLT +Ψ

and
Cov(y, f) = L

Also this form of factor model remains unchanged under the
orthogonal rotation of factors, when L is replaced by LA, for any
orthogonal matrix A

116



Communalities and uniquenesses

In terms of the elements `ij of L, we obtain

Var(yi) = `2
i1 + · · ·+ `2

im+ψi,

Cov(yi,yj) = `i1`j1 + · · ·+ `im`jm, Cov(yi, fj) = `ij.

Diagonal components of LLT, those that equal to the sum of `2
ij

for j = 1, 2, . . . ,m, are called communalities

Note that communalities are independent of rotations

Diagonal elements ψi of Ψ are called uniquenesses, or specific
variances

Note: the factor analysis model for the variance-covariance matrix
is not equivalent to the predictive form; it follows from it, but its
scope is more narrow. It is sufficient to adopt if we are interested
only in factors and their interpretation; it does not provide the
guidelines for the prediction of the individual factor scores
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Estimation in factor analysis

Loadings and uniquenessess are now estimated as parameters -
that is, for the whole sample; such an estimation may require only
the knowledge of var(Y). Factors may be then estimated from Y
as unobserved quantities specific for the i-th item.

There are two widely used methods: the first one7 estimates
loadings from principal components, obtaining the estimates
through low-rank approximation L̂L̂T of the sample variance-
covariance matrix SY - or, in practice, rather of the correlation
matrix RY. The estimates of uniquenesses, of the diagonal elements
of Ψ are then obtained as the diagonal elements of SY − L̂L̂T; non-
diagonal elements are dismissed

If estimates are obtained in this way, they are all nonnegative

A modification of the above scheme is possible too: uniquenesses
estimated first, then the diagonal matrix formed by them
subtracted from SY; the resulting matrix then low-rank
approximated as above. New estimates of uniquenesses can be
obtained in this way and the whole process can be iterated

7See Problem 26
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Low-rank approximation

The problem is defined as follows: given a matrix A, we are looking
for a matrix B, with rank not greater than m, which minimizes the
Euclidean (Frobenius, Hilbert-Schmidt) distance of A and B.

By its definition, the square of the Euclidean (Hilbert-Schmidt)
distance, d2(A, B), is just the sum of squares of all element-wise
differences. In matrix notation, it can be expressed as

tr(A − B)(A − B)T = tr(A − B)T(A − B)

(if both matrices are symmetric, as is our case, then the
transposition sign can be dropped)

For symmetric, nonnegative definite matrices, the approximation is
easily found via the eigenvalue decomposition. If A = UΛUT, with
U orthogonal, Λ diagonal, andm is the desired approximation rank,
the we put B = UΛmUT, where Λm is the matrix obtained from Λ
by taking its m largest diagonal elements, m largest eigenvalues
(all eigenvalues should be > 0), and replacing the rest of them by
0. As

A = UΛ1/2
m Λ

1/2
m UT = UΛ1/2

m (UΛ1/2
m )T

we can also see that how A can be written as L̂L̂T.
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Estimation: maximum likelihood

The method based on low-rank approximation is considered
somewhat historic - the method predominantly used these days is
maximum likelihood. It is based on the factor model and normality
assumption about y

Its advantage is yielding the same loadings even from rescaled
data, consistently with the stochastic factor model; but, on the
other hand, it may introduce so-called Heywood cases, estimates
of uniquenesses that are 0 or negative.

The latter are then usually adjusted: either directly to 0, or in
some other way: some implementations constrain uniquenesses to
be > than some preselected small number

Once loadings are estimated, then they are usually also rotated, to
facilitate their interpretation.
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Maximum likelihood and testing for m

Maximum likelihood estimates are particularly suitable testing with
the aim to assess m, the number of factors.

The null hypothesis H0 that the variance-covariance matrix has the
form Var(y) = LLT +Ψ is tested again a general Var(y) alternative
using likelihood ratio test, using the ratio of the maximized
likelihood under m factors and the maximized likelihood in general,
that is, under p factors. The −2 log of this ratio is

n log

(
det(L̂L̂T + Ψ̂)

det(n−1
n

SY)

)

where L̂ and Ψ̂ are maximum likelihood estimates under the
factor model, and n−1

n
SY is the maximum likelihood estimate of

unrestricted variance-covariance matrix Var(y) - all under normality
assumption

The test statistic has approximately χ2
1
2[(p−m)2−p−m]

distribution; the

approximation is improved (Bartlett) by replacing n by
(n−1−(2p+4m+5)/6). The null hypothesis that m factors are
sufficient is rejected when the statistic is large.
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Oblique rotations

Orthogonal rotations were obtained by inserting I = AAT into the
regression form of a factor model; inserting I in the form AA−1,
where A is not necessarily an orthogonal matrix, but merely an
invertible one results in a so-called oblique rotation

Such a move many consider controversial: while it preserves the
predictive form with the new loadings LA, the new factors A−1f
are not only no longer uncorrelated - and by the analogy with
uncorrelated principal components, it would be also natural to
assume that common factors are uncorrelated - but moreover,
the rotated factors do not preserve the variance-covariance factor
model (unless the rotation matrix is symmetric, which is not
assumed, and is typically not the case; most of the orthogonal
matrices used for rotations are not symmetric)

Thus, after general oblique rotation, the resulting common factors
are in general correlated - but, the assumption of uncorrelatedness
of factors is relaxed in a hope of possibly more unequivocal (“clear-
cut”) interpretation of factors

Note that oblique factor loadings are estimated in the same way
as the orthogonal factors; it is non-orthogonal rotation, requiring
only that A has to be invertible, which makes them oblique
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Promax: the varimax of oblique rotations

The algorithmic methods to obtain interesting oblique rotations
come also under various names, like promax, oblimin, quartimin,
oblimax, simplimax, ... (see the R package GPArotation again).

A prominent (and often preferred) method, a method with a
position in oblique rotations similar to that of varimax in the
orthogonal rotations, is called promax

The method (depends on s, typical values of s are s = 1, 2, 3, 4)
proceeds in the following steps:

1. L (orthogonally) rotated by varimax (by an orthogonal matrix
T); the rotated LT becomes new L

2. Q with the same dimension as L, qij = |`s−1
ij |`ij; the nonzero

elements are increased or decreased depending on whether they
are > 1 or < 1

3. LT is sought (T not necessarily orthogonal now) that best
approximates Q in the Euclidean (Hilbert-Schmidt) metric. The
expected effect is to decrease small and increase large loadings
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Oblique rotation for chocolate bars

> factanal(cov=cons,factors=2,rotation="promax")

Loadings:

Factor1 Factor2

[1,] 1.004

[2,] 0.892 -0.103

[3,] 0.975

[4,] 0.786 0.313

[5,] 0.997 -0.137
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Estimation of scores: prediction

As mentioned above, loadings and uniqueness can be estimated
from the variance-covariance (or correlation) matrix alone. Once
the p×m matrix L of loadings is estimated, the estimates become
“known” regressors in the regression form of the factor model

If full data are available, we can also estimate (predict!) factor
scores for each given i: that is, estimate fi under the assumption
that it is sampled with the same distribution as f.

There are two ways to do it:
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Bartlett scores

For fixed i, the sample version for i-th observation given by the
factor model is

yi−µ = Lfi+ ei

Once we “know” L - that is, we plug in its estimate L̂ - the
estimation of fi can be done by the least squares method, as in any
standard linear model. Given, however, that the variances of the
“errors” are not equal - the matrix Ψ is not diagonal - the usually
used estimate is that by the weighted least squares

f̂i = (L̂Ψ̂
−1

L̂)−1L̂TΨ̂
−1

(yi− ȳ)

where Ψ̂ is the estimate of Ψ obtained by one of the methods
described above

The formula is the standard regression estimate, except for the
fact that µ is estimated by

ȳ =
1

n

n∑
i=1

yi.
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Thomson (regression) scores

As both yi and fi are stochastic, we may also regress fi on yi in
a stochastic way (recall that the mean of fi is zero). That is,
they having the same distribution as y and f, we first note that U
minimizing

E(‖f − Uy‖2)

is (abusing slightly the notation)

U = Cov(f, y)(Var(y)−1 = LT(Var(y))−1

yelding a predictive equation, for every fixed i,

fi = Ui(yi−µ) = LT(Var(y))−1(yi −µ)

The Thomson scores are then obtained by replacing L, Var(y),
and µ respectively by their corresponding estimates L̂, S = var(Y),
and ȳ

f̂i = L̂TS−1(yi− ȳ)
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Track velocity records - men: variance matrix

X1 X2 X4 X8 X15 X50 X100 M

X1 0.090 0.080 0.064 0.056 0.056 0.058 0.061 0.048

X2 0.080 0.083 0.063 0.058 0.060 0.064 0.065 0.054

X4 0.064 0.063 0.067 0.057 0.058 0.064 0.066 0.058

X8 0.056 0.058 0.057 0.063 0.061 0.069 0.071 0.064

X15 0.056 0.060 0.058 0.061 0.072 0.080 0.082 0.074

X50 0.058 0.064 0.064 0.069 0.080 0.100 0.100 0.096

X100 0.061 0.065 0.066 0.071 0.082 0.100 0.110 0.099

M 0.048 0.054 0.058 0.064 0.074 0.096 0.099 0.100
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In colors
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Track velocity records - men: correlation matrix

X1 X2 X4 X8 X15 X50 X100 M

X1 1.00 0.92 0.83 0.75 0.69 0.60 0.61 0.50

X2 0.92 1.00 0.85 0.80 0.77 0.69 0.69 0.59

X4 0.83 0.85 1.00 0.87 0.83 0.77 0.78 0.70

X8 0.75 0.80 0.87 1.00 0.91 0.85 0.86 0.80

X15 0.69 0.77 0.83 0.91 1.00 0.93 0.93 0.86

X50 0.60 0.69 0.77 0.85 0.93 1.00 0.97 0.93

X100 0.61 0.69 0.78 0.86 0.93 0.97 1.00 0.94

M 0.50 0.59 0.70 0.80 0.86 0.93 0.94 1.00
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Again in colors
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Track records velocity - men: factor analysis
> factanal(trackmen,factors=2,rotation="varimax")

...

Uniquenesses:

s1 s2 s4 m8 m15 m50 m100 m421

0.081 0.076 0.151 0.135 0.082 0.034 0.018 0.086

Loadings:

Factor1 Factor2

s1 0.291 0.914

s2 0.382 0.882

s4 0.543 0.744

m8 0.691 0.622

m15 0.799 0.530

m50 0.901 0.394

m100 0.907 0.399

m421 0.915 0.278

...

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 16.36 on 13 degrees of freedom.

The p-value is 0.23

Note: the p-value indicates that two factors are enough
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For comparison: 1 factor

> factanal(trackmen,factors=1,rotation="varimax")

...

Uniquenesses:

s1 s2 s4 m8 m15 m50 m100 m421

0.556 0.461 0.332 0.196 0.094 0.036 0.025 0.118

Loadings:

Factor1

s1 0.666

s2 0.734

s4 0.817

m8 0.897

m15 0.952

m50 0.982

m100 0.988

m421 0.939

...

Test of the hypothesis that 1 factor is sufficient.

The chi square statistic is 156.37 on 20 degrees of freedom.

The p-value is 3.77e-23
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Track records velocity - men: oblique factors
> factanal(trackmen,factors=2,rotation="promax")

...

Uniquenesses:

s1 s2 s4 m8 m15 m50 m100 m421

0.081 0.076 0.151 0.135 0.082 0.034 0.018 0.086

...

Factor1 Factor2

s1 -0.153 1.066

s2 0.970

s4 0.288 0.689

m8 0.560 0.437

m15 0.760 0.249

m50 0.979

m100 0.985

m421 1.067 -0.160

Factor Correlations:

Factor1 Factor2

Factor1 1.000 0.735

Factor2 0.735 1.000

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 16.36 on 13 degrees of freedom.

The p-value is 0.23
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Track records velocity - men
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Track records velocity men - more rotations
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Track records velocity - women: factor analysis

factanal(x = welo, factors = 2, rotation = "varimax")

Uniquenesses:

s1 s2 s4 m8 m15 m30 m421

0.078 0.005 0.182 0.142 0.014 0.058 0.228

Loadings:

Factor1 Factor2

s1 0.449 0.849

s2 0.395 0.916

s4 0.591 0.685

m8 0.812 0.447

m15 0.912 0.394

m30 0.881 0.407

m421 0.753 0.453

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 50.17 on 8 degrees of freedom.

The p-value is 3.78e-08
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Track records velocity - women: oblique factors

factanal(x = welo, factors = 2, rotation = "promax")

Uniquenesses:

s1 s2 s4 m8 m15 m30 m421

0.078 0.005 0.182 0.142 0.014 0.058 0.228

Loadings:

Factor1 Factor2

s1 0.918

s2 1.052

s4 0.371 0.585

m8 0.855

m15 1.035

m30 0.982

m421 0.766 0.139

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 50.17 on 8 degrees of freedom.

The p-value is 3.78e-08

Note: p-values indicate that two factors are not enough.
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Track records velocity - women
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Track records velocity women - more rotations
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Track records velocity women - 3 factors

factanal(x = welo, factors = 3, rotation = "varimax")

Uniquenesses:

s1 s2 s4 m8 m15 m30 m421

0.076 0.005 0.088 0.005 0.037 0.018 0.192

Loadings:

Factor1 Factor2 Factor3

s1 0.414 0.829 0.255

s2 0.345 0.893 0.279

s4 0.417 0.615 0.600

m8 0.600 0.362 0.710

m15 0.806 0.360 0.429

m30 0.863 0.376 0.311

m421 0.749 0.428 0.255

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 4.65 on 3 degrees of freedom.

The p-value is 0.199
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Plotting those 3 factors
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Track records velocity women - 3 oblique factors

factanal(x = welo, factors = 3, rotation = "promax")

Uniquenesses:

s1 s2 s4 m8 m15 m30 m421

0.076 0.005 0.088 0.005 0.037 0.018 0.192

Loadings:

Factor1 Factor2 Factor3

s1 0.120 0.895

s2 1.006

s4 0.427 0.593

m8 0.326 0.778

m15 0.806 0.244

m30 0.957

m421 0.796 0.170

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 4.65 on 3 degrees of freedom.

The p-value is 0.199
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Plotting those 3 oblique factors
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Perhaps this way... but aren’t there outliers?
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Not really... but there is something in women...
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But who really knows... correlation matrices

The difference between sample and fitted correlation matrix

2 factors

s1 s2 s4 m8 m15 m30 m421

s1 0.16 0.00 -0.01 -0.01 0.00 0.01 0.00

s2 0.00 0.01 0.00 0.00 0.00 0.00 0.00

s4 -0.01 0.00 0.36 0.11 0.00 -0.02 -0.04

m8 -0.01 0.00 0.11 0.28 0.00 -0.02 -0.03

m15 0.00 0.00 0.00 0.00 0.03 0.00 -0.01

m30 0.01 0.00 -0.02 -0.02 0.00 0.12 0.04

m421 0.00 0.00 -0.04 -0.03 -0.01 0.04 0.46

3 factors

s1 s2 s4 m8 m15 m30 m421

s1 0.15 0.00 0.00 0.00 0.00 0.00 -0.01

s2 0.00 0.01 0.00 0.00 0.00 0.00 0.00

s4 0.00 0.00 0.18 0.00 -0.01 0.01 -0.01

m8 0.00 0.00 0.00 0.01 0.00 0.00 0.00

m15 0.00 0.00 -0.01 0.00 0.07 0.00 -0.01

m30 0.00 0.00 0.01 0.00 0.00 0.04 0.00

m421 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.38
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And variance-covariance matrices

The difference between sample and fitted variance matrix

2 factors

s1 s2 s4 m8 m15 m30 m421

s1 0.002 0.002 0.001 0.000 0.002 0.003 0.002

s2 0.002 0.003 0.002 0.002 0.002 0.002 0.003

s4 0.001 0.002 0.003 0.016 0.002 0.000 -0.006

m8 0.000 0.002 0.016 0.002 0.003 -0.001 -0.002

m15 0.002 0.002 0.002 0.003 0.003 0.003 0.002

m30 0.003 0.002 0.000 -0.001 0.003 0.003 0.013

m421 0.002 0.003 -0.006 -0.002 0.002 0.013 0.006

3 factors

s1 s2 s4 m8 m15 m30 m421

s1 0.002 0.002 0.002 0.001 0.002 0.002 0.000

s2 0.002 0.003 0.002 0.002 0.002 0.002 0.003

s4 0.002 0.002 0.003 0.002 0.001 0.003 0.000

m8 0.001 0.002 0.002 0.002 0.002 0.002 0.003

m15 0.002 0.002 0.001 0.002 0.003 0.003 0.002

m30 0.002 0.002 0.003 0.002 0.003 0.003 0.004

m421 0.000 0.003 0.000 0.003 0.002 0.004 0.006
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Finally, scores

Thomson Bartlett Thomson Bartlett

Factor1 Factor2 Factor1 Factor2 Country Factor1 Factor2 Factor1 Factor2 Country

1 -0.9685 1.0361 -1.0018 1.0610 argentin 30 0.1438 -0.4528 0.1525 -0.4602 japan

2 0.1143 1.2442 0.1013 1.2583 australi 31 0.7781 -0.6194 0.8023 -0.6368 kenya

3 0.1241 0.4665 0.1209 0.4708 austria 32 -0.0466 -0.8468 -0.0371 -0.8568 korea

4 0.5114 0.3397 0.5180 0.3376 belgium 33 1.3485 -2.5211 1.4084 -2.5692 dprkorea

5 -1.3524 1.1252 -1.3950 1.1560 bermuda 34 0.3394 -1.4243 0.3643 -1.4462 luxembou

6 -0.9612 0.8619 -0.9923 0.8846 brazil 35 -1.2613 -0.1018 -1.2868 -0.0874 malaysia

7 -0.1739 -0.7955 -0.1677 -0.8032 burma 36 -1.3936 -0.7575 -1.4137 -0.7496 mauritiu

8 0.3970 1.2592 0.3898 1.2699 canada 37 0.1802 -0.1426 0.1858 -0.1467 mexico

9 0.7348 -1.2138 0.7654 -1.2380 chile 38 0.6421 0.5287 0.6491 0.5272 netherla

10 0.3453 -0.9417 0.3644 -0.9577 china 39 0.4826 0.2514 0.4897 0.2486 nz

11 0.0148 -0.3813 0.0198 -0.3862 columbia 40 1.2676 -0.2807 1.2979 -0.2999 norway

12 -0.6737 -2.7544 -0.6537 -2.7802 cookis 41 -1.4162 -0.7880 -1.4364 -0.7802 png

13 -1.0572 -0.5152 -1.0732 -0.5085 costa 42 -1.3113 0.5868 -1.3464 0.6104 philippi

14 -0.0072 1.7394 -0.0289 1.7611 czech 43 0.6095 1.1938 0.6076 1.2011 poland

15 0.6685 -0.1988 0.6852 -0.2096 denmark 44 1.0166 -1.0459 1.0511 -1.0715 portugal

16 -1.4133 0.1522 -1.4451 0.1716 domrep 45 1.6000 -0.5378 1.6406 -0.5644 rumania

17 0.2623 1.1515 0.2535 1.1625 finland 46 -0.1974 -1.2508 -0.1861 -1.2638 singapor

18 0.2222 0.9521 0.2150 0.9611 france 47 0.9142 -0.7825 0.9433 -0.8036 spain

19 0.5213 1.8263 0.5097 1.8424 gdr 48 0.4597 0.6143 0.4618 0.6162 sweden

20 0.7190 0.9759 0.7221 0.9791 frg 49 0.9392 -0.1212 0.9606 -0.1343 switzerl

21 0.5180 1.3311 0.5124 1.3412 gbni 50 -0.9043 1.3934 -0.9407 1.4219 taipei

22 -0.0732 -0.4504 -0.0692 -0.4550 greece 51 -1.1739 -0.3031 -1.1950 -0.2923 thailand

23 -1.6964 -0.1641 -1.7303 -0.1451 guatemal 52 0.0950 -0.8768 0.1079 -0.8888 turkey

24 0.4889 0.3275 0.4952 0.3255 hungary 53 0.7142 1.5986 0.7094 1.6095 usa

25 0.0781 -0.7086 0.0886 -0.7184 india 54 1.3350 0.9125 1.3519 0.9072 ussr

26 -0.9647 -0.2176 -0.9824 -0.2083 indonesi 55 -3.7497 -0.4584 -3.8234 -0.4175 wsamoa

27 0.8428 -0.2668 0.8640 -0.2806 ireland

28 0.1501 -0.0359 0.1537 -0.0382 israel

29 1.2172 0.0875 1.2419 0.0735 italy
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And their plots
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Summary: what

In factor analysis,

1. we need to (pre)determine the number of factors - either from
the principal component analysis, or via testing methods

2. then estimate the loadings of the specified number of factors
(nowadays mostly by the method of maximum likelihood)

3. and then we typically want to find a suitable rotation of the
solution; if we want to keep common factors uncorrelated, we
use only orthogonal rotations (like “varimax”); if we do not care
about this particular aspect, we may also use oblique rotations (like
“promax”)

4. and finally, we may want to estimate the individual scores
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Summary: why

A possible objective is to arrive to some plausible interpretation
of the mechanism generating the data. This was the motivation
of factor analysis in its classical era - and is still vital in certain
areas of application. In this context, factor analysis was frequently
confused with principal component analysis, so it is important to
be aware of differences: the latter is not, but the former is invariant
(more precisely, equivariant) with respect to the change of scale
(at least in its stochastic model, but then also in the maximum
likelihood estimates)

This classical objective has been a subject of criticism: from the
scientific point of view, factor interpretation has to be confirmed
by other sources - otherwise, from the statistical viewpoint, factor
analysis as presented here is merely a sophisticated exploratory
method.

We can, however, also use the individual scores (which implicitly
involve some dimensional reduction) for prediction. This objective
received new impetus in so-called recommender systems; as such
application is focused on prediction, interpretability is not an issue
there
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Empiricist Relationships: Canonical Correlations
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Outline

Find directions in the first and second sample, respectively,

that exhibit maximal correlation

And then second maximal, third maximal...

To summarize correlations between two samples

Alternative name: canonical variates
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Sample correlation coefficient

Recall:

ρxy =

n∑
i=1

(xi− x̄)(yi− ȳ)√√√√ n∑
i=1

(xi− x̄)
2
n∑
i=1

(yi− ȳ)
2

Properties?
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The prescription

Consider two data matrices:

X composed of lines xT
i , and

Y composed of lines yT
i , i = 1, . . . ,n

Note: the numbers p and q of variables, the number of columns
of X and Y respectively, may be different; but the number of their
rows, the number of datapoints, has to be the same

We seek (nonzero) vectors a1 and b1 such that the (sample)
correlation coefficient of Xa1 and Yb1 is maximal

Once found, we may continue: seek nonzero vectors a2 and b2

such that a2 is orthogonal to a1 and b2 to b1, again maximizing
correlation of Xa2 and Yb2 now

Continuing this, we may seek nonzero vector aj orthogonal to all
previous ai, and nonzero bj orthogonal to all previous bi such that
the correlation of Xaj and Ybj is maximal. Of course, this is possible
only if j 6 p and j 6 q; hence we can repeat the above only
min{p,q} times
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Remarks

Note that the correlation coefficient changes only by the sign of c
if either ai or bi is replaced by replaced by cai or cbi, respectively

Thus, we do not have to worry about negative correlations - just
take the opposite ai or bi and they become positive. Then, when we
are multiplying either ai or bi by positive constants, the correlations
remain the same. Therefore, the only side condition on ai and bi
is that they are nonzero - from the mathematical point of view,
everything else is well-posed

From the numerical point of view, however, it may be practical to
scale ai and bi in some convenient way; it is usually done that the
variances of resulting linear combinations of the data - canonical
variates - are 1

Canonical variates come in pairs, and given what was specified
above, there are min{p,q} of these pairs. In a special case when
p or q is equal to one, there is only one pair; the maximized
correlation coefficient is the multiple correlation coefficient
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Stochastic underpinning?

The situation here is similar as for the principal components
- it is possible to consider stochastic (“population”) canonical
correlations (although this possibility is seldom exercised): given
random vectors x and y, one may seek vectors a1 and b1 maximizing
the (stochastic) correlation coefficient

Cor(aT
1x, bT

1y) =
Cov(aT

1x, bT
1y)√

Var(aT
1x)Var(bT

1y)

and then subsequently vectors a2, b2, . . . , completely analogously
to the previous case

And again, in the situations when lines of X and Y are sampled
respectively from the distributions of x and y, the “sample”
canonical correlations are empirical estimates of the “population”
ones
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Solution: variance matrices again

Notation: var(X) = SX is now denoted as SXX, and analogously
var(Y) = SY as SYY. Symbols SXY = cov(X, Y) and SYX = cov(Y, X)
denote now the matrices of (sample) cross-covariances between X
and Y, with SXY = ST

YX. Then

var
(
X Y

)
=

(
SXX SXY

SYX SYY

)
is the variance-covariance matrix of the joint data matrix

(
X Y

)
.

The correlation between Xa and Yb is
aTSXYb√

(aTSXXa)(bTSYYb)
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Solution continued

Then, the maximal correlation between Xa and Yb,

maximized over a 6= 0 and b 6= 0,

is
√
λ, where λ is the largest eigenvalue of both

S−1
XXSXYS−1

YYSYX

S−1
YYSYXS−1

XXSXY

and
a

b
are the corresponding eigenvectors

More generally, if X has p and Y has q columns, then the number
of canonical correlations is m = min{p,q} and they are the square
roots of the first m maximal eigenvalues of the matrices above,
with coefficients being the corresponding eigenvectors

Yes, and if this m = 1, that is, when either p or q is equal to 1,
then the only canonical correlation is called multiple correlation
coefficient, of one variable against the reminding ones

In stochastic version, the solution proceeds in the completely
analogous way, taking stochastic counterparts of the variances and
covariances
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Example: sons

Length and breadth, respectively, of the head of the first and
second son

L1 B1 L2 B2 L1 B1 L2 B2

1 191 155 179 145 14 190 159 195 157

2 195 149 201 152 15 188 151 187 158

3 181 148 185 149 16 163 137 161 130

4 183 153 188 149 17 195 155 183 158

5 176 144 171 142 18 186 153 173 148

6 208 157 192 152 19 181 145 182 146

7 189 150 190 149 20 175 140 165 137

8 197 159 189 152 21 192 154 185 152

9 188 152 197 159 22 174 143 178 147

10 192 150 187 151 23 176 139 176 143

11 179 158 186 148 24 197 167 200 158

12 183 147 174 147 25 190 163 187 150

13 174 150 185 152
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The result

> sons <- read.table("sons.d")

> cancor(sons[,1:2],sons[,3:4])

$cor

[1] 0.7885079 0.0537397

$xcoef

[,1] [,2]

L1 0.01154653 -0.02857148

B1 0.01443910 0.03816093

$ycoef

[,1] [,2]

L2 0.01025573 -0.03595605

B2 0.01637533 0.05349758

$xcenter

L1 B1

185.72 151.12

$ycenter

L2 B2

183.84 149.24
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Canonical variates?

> sons.cc <- cancor(sons[,1:2],sons[,3:4])

> canvarx <- as.matrix(sons[,1:2]) %*% sons.cc$xcoef[,1]

> canvary <- as.matrix(sons[,3:4]) %*% sons.cc$ycoef[,1]

> plot(canvarx, canvary, pch=16,

+ xlab=’First son’,ylab=’Second son’)
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And the plot
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What else?

> var(sons)

L1 B1 L2 B2

L1 95.29333 52.86833 69.66167 46.11167

B1 52.86833 54.36000 51.31167 35.05333

L2 69.66167 51.31167 100.80667 56.54000

B2 46.11167 35.05333 56.54000 45.02333

$xcoef

[,1] [,2]

L1 0.01154653 -0.02857148

B1 0.01443910 0.03816093

$ycoef

[,1] [,2]

L2 0.01025573 -0.03595605

B2 0.01637533 0.05349758
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Example: running data
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Running data transcript

> vwcor=cancor(tram[,1:8],traw[,1:7])

> par(mfrow=c(2,2))

> plot(as.matrix(tram[,1:8]) %*% vwcor$xcoef[,1],

+ as.matrix(traw[,1:7]) %*% vwcor$ycoef[,1],pch=16)

> identify(as.matrix(tram[,1:8]) %*% vwcor$xcoef[,1],

+ as.matrix(traw[,1:7]) %*% vwcor$ycoef[,1],labels=traw[,8])

[1] 12 55

> plot(as.matrix(tram[,1:8]) %*% vwcor$xcoef[,2],

...

[1] 12 14 55

> plot(as.matrix(tram[,1:8]) %*% vwcor$xcoef[,3],

...

[1] 19 25 34 36 42 43

> plot(as.matrix(tram[,1:8]) %*% vwcor$xcoef[,4],

...

[1] 1 23 33 34 36 45
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How canonical correlations fare here?

> barplot{vwcor}
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Running data transcript continued

> vwcor

$cor

[1] 0.9521159 0.6733411 0.5108601 0.4351771 0.2730063 0.2395034 0.1547629

$xcoef

[,1] [,2] [,3] [,4] [,5] [,6]

s1 0.104094168 -0.107380162 -0.515664832 -0.25908559 -0.6883280074 0.376619624

s2 -0.108737342 -0.106936978 -0.109330683 0.06559543 0.4299810105 -0.217250889

s4 0.013809246 -0.124909061 0.174467768 0.08240273 0.0093848913 0.041841603

m8 -0.846947526 2.292211283 2.128900905 -4.67774851 -0.5470794211 -0.441871257

m15 -0.206532529 0.277130648 -0.415851876 1.31836018 -0.0001939217 -1.524535704

m50 -0.008423944 -0.080300588 -0.030690671 0.01810175 -0.5673227355 -0.309327155

m100 -0.024762400 0.087875854 -0.007190537 -0.10191559 0.2682108659 0.241688938

m421 0.001308979 -0.003716701 -0.006534732 0.02209632 -0.0084966587 0.006218362

...

$ycoef

[,1] [,2] [,3] [,4] [,5] [,6]

s1 -0.0130055307 0.0176386680 0.061917582 0.5792507543 0.216963524 -0.64954132

s2 -0.0605052422 -0.0957820269 -0.015752815 -0.3076449771 0.097987108 0.13392170

s4 0.0209834118 -0.0064488138 0.073967723 -0.0029267579 -0.112539112 0.04433569

m8 -0.5073336300 -1.6614889659 -2.314920945 2.2016538222 1.758300290 0.07128654

m15 0.0094233762 1.0338571845 1.374913004 -0.2205103685 0.701931326 0.69584361

m30 -0.0694585560 -0.0872183745 -0.281419643 -0.0572468827 -0.469592348 -0.36565080

m421 -0.0007024018 0.0001743919 -0.005775172 -0.0008261367 0.001848462 0.00326083

...
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How about omitting very small countries?

(Cook Island, Luxembourg, Western Samoa omitted)

> vwnew=cancor(tram[-c(12,34,55),1:8],traw[-c(12,34,55),1:7])

> barplot(vwnew$cor)
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The result

> vwnew

$cor

[1] 0.9407974 0.5884286 0.5081459 0.3802782 0.3493206 0.2844400 0.1257613

$xcoef

[,1] [,2] [,3] [,4] [,5] [,6]

s1 -0.0592844998 0.42333578 -0.092313052 0.36266317 1.21069000 0.2341572681

s2 -0.0586454028 -0.23234027 -0.316222887 -0.32816777 -0.39066849 -0.1487345454

s4 0.0081157972 -0.10537898 0.213525556 -0.03270155 0.06395563 -0.0241539365

m8 -0.6341725899 -0.58367704 -0.768746039 4.99394224 -2.81142541 0.0256325079

m15 -0.2088342032 -0.06469008 0.085591407 -1.70388403 -0.50357199 0.4721261302

m50 -0.0603341980 -0.01619295 -0.031304150 0.14973689 0.15662788 0.7664245903

m100 -0.0225362139 0.05796283 -0.021212688 0.14387843 -0.07560743 -0.3486315644

m421 0.0007541957 0.01502310 0.006513154 -0.02803850 0.01260490 0.0005577576

...

$ycoef

[,1] [,2] [,3] [,4] [,5] [,6]

s1 -0.0003540832 0.050271374 0.178529200 -0.817049127 -0.375775582 0.077606779

s2 -0.0593500609 -0.203584049 -0.148173170 0.308869741 -0.006811645 -0.139683776

s4 0.0158728665 0.009585147 0.060670314 0.040390516 0.097630689 0.094526166

m8 -0.3105236092 -1.532243337 -0.262419707 -3.163682685 -0.185052036 -2.292433786

m15 -0.1714313947 1.075555404 1.094736369 1.344590415 -0.446258250 -0.552282755

m30 -0.0500201340 -0.116154880 -0.351132266 -0.093779920 -0.098462780 0.545947847

m421 -0.0011833621 0.003367182 -0.004573076 -0.002911054 0.005610899 -0.004093673

...
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Canonical correlations via SVD

We start again form the variance-covariance matrix of joint data
matrix

(
X Y

)
and multiply it by matrices from left and right as

follows:(
S
−1/2
XX O

O S
−1/2
YY

)(
SXX SXY

SYX SYY

)(
S
−1/2
XX O

O S
−1/2
YY

)

=

(
I S

−1/2
XX SXYS

−1/2
YY

S
−1/2
YY SYXS

−1/2
XX I

)

where A−1/2 a matrix such that A−1/2A−1/2 = A−1

We then apply SVD to the matrix (the other one is its transpose)

S
−1/2
XX SXYS

−1/2
YY = UΛVT

The singular values are canonical correlations now; the columns
of matrices S

−1/2
XX U and S

−1/2
YY V give respectively the vectors of

coefficients.

In the stochastic version, we again proceed completely analogously,
using the stochastic counterparts of variances and covariances
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It works for categorical data too

We can apply the technology to the qualitative/categorical data
with two variables. Recall hair/eye color/sex data: we form the
aggregated hair/eye data

> haireye=apply(HairEyeColor,1:2,sum)

> haireye

Eye

Hair Brown Blue Hazel Green

Black 68 20 15 5

Brown 119 84 54 29

Red 26 17 14 14

Blond 7 94 10 16
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R shenanigans

Next step is to convert the tabular data to the ”data frame” form

> hairdat=haireye[rep(row.names(haireye),haireye$Freq),1:2]

Error in haireye$Freq : $ operator is invalid for atomic vectors

> hair=as.table(haireye)

> hairdat=hair[rep(row.names(hair),hair$Freq),1:2]

Error in hair$Freq : $ operator is invalid for atomic vectors

> hair=as.data.frame(haireye)

> hairdat=hair[rep(row.names(hair),hair$Freq),1:2]

Error in rep(row.names(hair), hair$Freq) : invalid ’times’ argument

> hair=as.data.frame(as.table(haireye))

> hairdat=hair[rep(row.names(hair),hair$Freq),1:2]

Finally!! And then we form the “dummy” 0-1 variables out of
those: as there are 4 levels of each variable (“factor”), there are 4
variables in each of the following matrices: each variable is equal
to 1 when the particular level of the factor (color) is present at the
i-th object, and to 0 otherwise

> X=model.matrix(~Hair-1,data=hairdat)

> Y=model.matrix(~Eye-1,data=hairdat)
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And now: hocus-pocus

> cancor(X,Y)

$cor

[1] 0.45691646 0.14908593 0.05097489

...

A technique built on this is called correspondence analysis

> corresp(haireye,nf=3)

First canonical correlation(s): 0.45691646 0.14908593 0.05097489

...

Some quantities which will be needed later:

> r = apply(haireye,1,sum)/sum(haireye)

> c = apply(haireye,2,sum)/sum(haireye)

> E = haireye/sum(haireye)
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Correspondence analysis

Suppose that E is the matrix formed from nij/n (the estimates of
cell probabilities not assuming the independence hypothesis) and R,
C are diagonal matrices formed from vectors r and c, with elements
ri = ni·/n and cj = n·j/n, respectively.

Consider the matrix R−1/2EC−1/2 (it is easy to form the square
roots of diagonal matrices with positive elements). This matrix
has elements

eij√
ricj

SVD of this matrix can be viewed as returning scores giving
maximal “correlations” for rows and columns. The largest singular
value is always one, corresponding to constant scores; hence we
dismiss it, and look only for nontrivial solutions corresponding to
singular values beginning with the second largest. That is, we form
the SVD of

R−1/2(E − rcT)C−1/2 = UΛVT

instead, and then we may take first one or two singular values.
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> svd(diag(1/sqrt(r)) %*% E %*% diag(1/sqrt(c)))

$d

[1] 1.00000000 0.45691646 0.14908593 0.05097489

$u

[,1] [,2] [,3] [,4]

[1,] -0.4271211 0.47166009 0.6154461 0.4651134

[2,] -0.6950598 0.22552151 -0.1522951 -0.6654608

[3,] -0.3463126 0.09817011 -0.7424993 0.5649115

[4,] -0.4631706 -0.84678181 0.2161646 0.1473309

$v

[,1] [,2] [,3] [,4]

[1,] -0.6096078 0.6566258 0.3611439 0.25844921

[2,] -0.6026406 -0.7220003 0.3353208 -0.05567605

[3,] -0.3963516 0.1844169 -0.4450167 -0.78157274

[4,] -0.3287980 -0.1163980 -0.7477267 0.56502056

> svd(diag(1/sqrt(r)) %*% (E - r %*% t(c)) %*% diag(1/sqrt(c)))

$d

[1] 4.569165e-01 1.490859e-01 5.097489e-02 2.929785e-19

$u

[,1] [,2] [,3] [,4]

[1,] -0.47166009 0.6154461 -0.4651134 0.4271211

[2,] -0.22552151 -0.1522951 0.6654608 0.6950598

[3,] -0.09817011 -0.7424993 -0.5649115 0.3463126

[4,] 0.84678181 0.2161646 -0.1473309 0.4631706

$v

[,1] [,2] [,3] [,4]

[1,] -0.6566258 0.3611439 -0.25844921 -0.6096078

[2,] 0.7220003 0.3353208 0.05567605 -0.6026406

[3,] -0.1844169 -0.4450167 0.78157274 -0.3963516

[4,] 0.1163980 -0.7477267 -0.56502056 -0.3287980
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The mechanized way
> library(MASS)

> hc1 = corresp(haireye)

First canonical correlation(s): 0.4569165

Hair scores:

Black Brown Red Blond

-1.1042772 -0.3244635 -0.2834725 1.8282287

Eye scores:

Brown Blue Hazel Green

-1.0771283 1.1980612 -0.4652862 0.3540108

> hc2 = corresp(haireye,nf=2)

First canonical correlation(s): 0.4569165 0.1490859

Hair scores:

[,1] [,2]

Black -1.1042772 1.4409170

Brown -0.3244635 -0.2191109

Red -0.2834725 -2.1440145

Blond 1.8282287 0.4667063

Eye scores:

[,1] [,2]

Brown -1.0771283 0.5924202

Blue 1.1980612 0.5564193

Hazel -0.4652862 -1.1227826

Green 0.3540108 -2.2741218
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Interpretation I

Can be thought of as analysis of the χ2 statistic for independence,

because the elements of the matrix R−1/2(E−rcT)C−1/2 are Pearson

residuals, up to a factor
√
n.

> class(haireye)=’table’

> matrix(residuals(glm(Freq~Hair+Eye,family=poisson,

data=as.data.frame(haireye)),type=’pearson’),4,4)/sqrt(sum(haireye))

[,1] [,2] [,3] [,4]

[1,] 0.180773066 -0.12615064 -0.01961905 -0.08029590

[2,] 0.050694815 -0.08012300 0.05561963 -0.01418351

[3,] -0.003081574 -0.07110772 0.03502737 0.09381990

[4,] -0.240474512 0.28973637 -0.09156384 0.02518174

> diag(1/sqrt(r)) %*% (E - r %*% t(c)) %*% diag(1/sqrt(c))

[,1] [,2] [,3] [,4]

[1,] 0.180773066 -0.12615064 -0.01961905 -0.08029590

[2,] 0.050694815 -0.08012300 0.05561963 -0.01418351

[3,] -0.003081574 -0.07110772 0.03502737 0.09381990

[4,] -0.240474512 0.28973637 -0.09156384 0.02518174
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Recall: the anatomy of χ2-statistic

Recall: we want to test independence in a r × c contingency
table. The probabilities of observations in cells are pij; under
the hypothesis of independence, pij = pi·p·j, where pi· and p·j are
column and row sums - marginal probabilities. We observe cells
frequencies nij; the estimates for pi·, and p·j are p̂i· = ni·/n and
p̂·j = n·j/n, respectively; n is the total number of observations.
Under the hypothesis of independence, the estimate for the cell
probability is p̂ij = p̂i·p̂·j = (ni·/n)(n·j/n), and therefore, while the
observed number is O = nij, the predicted number of observations
is

P = n
ni·n·j

n2
=
ni·n·j

n
; the test statistics is

∑
all cells

(Ok− Pk)
2

Pk

- the sum of squares of “Pearson residuals”
Ok− Pk√

Pk

We use χ2 distribution with (r− 1)(c− 1) degrees of freedom to
assess how large is this statistic is large enough, via its right tail
value, which gives the p-value for the hypothesis of independence.
If this p-value is low, we may reject the hypothesis: good, but
what then?
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Another interpretation - and plotting

Correspondence analysis can be also viewed, as mentioned above,
as canonical correlations : a search for the linear combination giving
maximal contingency (“correlation”) - not accounting for the trivial
constant solution

In this direction, it can be a comparison of distances between
“profiles” - rowwise or columnwise conditional distributions.

If the resulting SVD is UΛVT, then of interest are first columns of
A = R−1/2UΛ and B = C−1/2VΛ

Inertia: the sum of squares of omitted singular values

Plotting:

“Asymmetric approach”: plots either first two columns of A with
first two columns of C−1/2V (rows) or B with first two columns of
R−1/2U (columns). Row plot can be viewed as that A is a convex
combination of row profiles, given by C−1/2V - and similarly the
column one

Or, in “classical correspondence analysis”, “symmetric approach”,
first two columns of A and B are plotted on the same figure
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Asymmetric view: rows
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> plot(hc2,type="rows")

> biplot(hc2,type="rows")

> mosaicplot(haireye,sort=c(2,1),dir=c(’v’,’h’))
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Asymmetric view: columns
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> plot(hc2,type="columns")

> biplot(hc2,type="columns")

> mosaicplot(haireye,sort=c(1,2),dir=c(’h’,’v’))
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And now, symmetric view

First column only First two columns (more common)
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> plot(hc2)

> biplot(hc2)

> biplot(hc2,xlim=c(-0.55,0.9),ylim=c(-0.55,0.9))
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Extending Classics:
Multivariate Normal Distribution and All Around
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Recall: electrodes

Various electrodes have been tried successively on arms of 16
subjects.

> read.table("electro.d",header=T,row.names=1)

E1 E2 E3 E4 E5

1 500 400 98 200 250

2 660 600 600 75 310

3 250 370 220 250 220

4 72 140 240 33 54

5 135 300 450 430 70

6 27 84 135 190 180

7 100 50 82 73 78

8 105 180 32 58 32

9 90 180 220 34 64

10 200 290 320 280 135

11 15 45 75 88 80

12 160 200 300 300 220

13 250 400 50 50 92

14 170 310 230 20 150

15 66 1000 1050 280 220

16 107 48 26 45 51
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A picture (to figure out whether normal
distribution of results is plausible here)
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Seems like a bit of asymmetry there... take logs!

> elel=log(read.table("electro.d",header=T,row.names=1))

> par(mfcol=c(5,2))

> for (i in 1:5)

+ {

+ qqnorm(ele[,i])

+ qqline(ele[,i])

+ }

> for (i in 1:5)

+ {

+ qqnorm(elel[,i])

+ qqline(elel[,i])

+ }
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Normal qqplots: left before, right after the logs
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Normal distribution: definition

The most straightforward way to define the general, that is
multivariate normal distribution (including univariate as a special
case) is via its characteristic function

We say that a p-dimensional random vector X has normal
distribution, if and only if its characteristic function is

ϕ(t) = eit
Tµ−1

2tTΣt

for some p-dimensional vector µ and some nonnegative definite
p×p symmetric matrix Σ; in such a case, we write that X has the
N(µ,Σ) distribution

This definition and notation is justified by the fact that the
characteristic function unambiguously determines the probability
distribution, and µ and Σ uniquely determine the characteristic
function given here

The definition, as given here, allows for singular (degenerate)
alternatives; the version precluding those would require that Σ is
positive definite
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Normal distribution: univariate case

In the univariate case, normal distribution is uniquely determined
by an arbitrary number µ and an arbitrary nonnegative number σ2.
The characteristic function of normal distribution reduces to

ϕ(t) = eitµ−
1
2t

2σ2

For σ2 > 0 it is the characteristic function of the distribution with
the density

f(x) =
1

σ
√

2π
e
−

(x−µ)2

2σ2

(This can be shown in a slightly involved, but yet accessible way)

The singular (degenerate) cases are those with σ2 = 0; in such
case there is no density, as P[X = µ] = 1. These cases can be
viewed as certain limits when σ2→ 0 for fixed µ

Also, it can be shown via direct calculation with characteristic
function that if X has univariate normal distribution with
parameters σ2 and µ, then aX + b has also univariate normal
distribution with respective parameters (aσ)2 and aµ+ b
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Normal distribution: moments - univariate

The general characteristic function of normal distribution has
continuous derivatives of all orders, which implies the existence
of all moments. Thus a random vector X with normal distribution
has well-defined and finite E(X) and Var(X)

In the univariate case, when a random variable X has univariate
normal distribution, then the differentiation of its characteristic
function at 0 (or direct calculation) yields

E(X) = µ

Var(X) = σ2

This includes also singular situations and is consistent with the
distribution of the transformed variable aX+ b, as

E(aX+ b) = aµ+ b and Var(aX+ b) = a2σ2

192



Normal distribution: general multivariate

Once certain properties of the univariate normal distribution
(in particular, the correspondence between the characteristic
function and the density, and also the closeness under affine
transformations) are established, it is possible to bypass (to
an extent) characteristic functions and give an equivalent
characterization (and thus an equivalent definition) of the
(multivariate) normal distribution via the distributions of linear
combinations.

A random vector X has (multivariate) normal distribution, if and
only if any linear combination, `TX, of the components of X has
univariate normal distribution

This property immediately implies the transformation property for
general normal distribution: if a random vector X has normal
distribution, then also a vector AX + b has normal distribution,
for arbitrary A and b. Thus, if a vector has normal distribution,
then its every subvector (created by taking certain components,
not necessarily adjacent ones) has normal distribution; and in
particular, every component has normal distribution
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Normal distribution: moments - general

The transformation property then also implies the existence of the
first and second moments. Let the vector `i has i-th component
equal to 1 and all others to 0

If a random vector X has normal distribution, then all its
components Xi = `T

iX have univariate normal distributions, with
means µi; thus, we can introduce µ to denote the mean of the
general normal distribution

E(X) = (µ1,µ2, . . . ,µp)T = µ

The existence of all componentwise variances yields, via the
Cauchy-Schwarz inequality, the existence of Cov(`T

iX, `T
j X) for all i

and j - these covariances form the corresponding elements of the
variance-covariance matrix Var(X); the latter is to be denoted by Σ

Given all this, one can conclude that if X has a general normal
distribution with mean µ and variance-covariance matrix Σ, then
`TX, for any `, has univariate normal distribution with mean `Tµ
and variance `TΣ`
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Normal distribution: proof of the characterization

Once again: after defining univariate normal distribution and
establishing some of its properties, we can define the general
normal distribution by the property that any linear combination,
`TX, of the components of X has univariate normal distribution.

The fact that the distribution of X is completely characterized by
the collection of one-dimensional distributions of `TX is the Cramér-
Wold theorem. Its proof is also via characteristic functions:

if Y = `TX then ϕY(s) = E(eisY) = E(eis`
Tx)

and for s = 1, ϕy(1) = E(ei`
TY), which, regarded as a function of `,

is a characteristic function of the random vector X.

195



Normal distribution: characterization proof
continued

Having defined general normal distribution via the linear
combinations, we can derive several properties of it, as shown
above. At some point, however, we need the characteristic function
of the general normal distribution: we derive it from that of
the univariate one. In that way, we prove the “only if” part of
the characterization of the normal distribution given above; the
“if” part follows by the manipulations with general characteristic
function

Knowing that Y = `TX has normal distribution with mean `Tµ and
variance `TΣ`, we obtain the characteristic function of Y as

ϕY(t) = eit`
Tµ−1

2t
2`TΣ`

This yields

ϕX(`) = E(ei`
TX) = E(eiY) = ϕY(1) = ei`

Tµ−1
2`

TΣ`

- which is identical to the characteristic function introduced at the
beginning
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Normal distribution and independence

If X1 is N(µ1,Σ1), X2 is N(µ2,Σ2), and they are independent

then X =

(
X1

X2

)
is N

((
µ1

µ2

)(
Σ1 0
0 Σ2

))
Conversely, if X has normal distribution, and the structure of the
variance-covariance matrix is as above - which mean that X1 and
X2 are uncorrelated - then not only X1 and X2 both have normal
distribution, but they are also independent

Both of these assertions can be now verified by manipulations with
characteristic functions - and obviously, they are valid not only for
two, but for any finite collection of random vectors X

Yes, and there are some finessess here:

Suppose that X1 has normal distribution, and X2 has normal
distribution. Does the vector X = (X1, X2)

T have normal
distribution (we may say then that X1 and X2 are jointly normal,
to emphasize that)? Well, if X1 and X2 are independent, then the
property above says that yes, but otherwise it may be one way or
another...

197



Normal distribution has a density...

The independence property immediately yields that if U is a random
vector consisting of p independent components Ui, each with
a standard normal distribution N(0, 1), then U has the N(0, I)
normal distribution. Its density is the product of p standard normal
densities

g(x) =
1√

(2π)p
e−

1
2xTx

In the general case, variance-covariance matrix Σ is a symmetric
matrix: thus there is a matrix Σ1/2 such that Σ1/2Σ1/2 = Σ

In the nonsingular, non-degenerate case, when the variance-
covariance matrix Σ is positive definite and thus invertible, then
Σ1/2 is invertible too, and the density transformation theorem says
that the distribution of X = Σ1/2U +µ - which the examination of
moments shows to be N(µ,Σ) - has the density

f(x) =
1√

(2π)pdet(Σ)
e−

1
2(x−µ)TΣ−1(x−µ)
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... if its variance-covariance matrix is nonsingular

So, in the nonsingular, non-degenerate case, when the variance-
covariance matrix Σ is invertible and thus positive definite, normal
distribution N(µ,Σ) has a density

If Σ is singular, then X does not have a density with respect to the
Lebesgue measure on Rp, but it may have one when restricted to
some affine subspace of Rp, with respect to some appropriately-
dimensional Lebesgue measure on that subspace
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Summary

Let us summarize the most important properties now:

• Normal is characterized by first and second moments

by µ and Σ

• Affine transformation of normal is normal

and then it comes again to first and second moments:

if X is N(µ,Σ), then AX + b is N(Aµ+ b, AΣAT)

and in particular, all subvectors are normal

• If subvectors of normal are uncorrelated, they are independent

(“uncorrelated” means zeros in the appropriate part of Σ)

• Normal has a density f(x) =
1√

(2π)pdet(Σ)
e−

1
2(x−µ)TΣ−1(x−µ)

but only if Σ is nonsingular, positive definite

And here again beware: random variable X has normal distribution,
random variable Y has normal distribution, they are uncorrelated:
are they independent?
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From Univariate to Multivariate Normal Sampling:
One-Sample Hotelling’s T2

201



Normal sampling: recall univariate setting first

We have n numbers, y1,y2, . . . ,yn - and we believe that

they can be modeled as the outcomes of n random variables

Y1,Y2, . . . ,Yn - which are iid with the distribution N(µ,σ2)

(iid = “independent identically distributed”)

In such case, we have (for all i) µ = E(Xi)

and σ2 = Var(Yi) = E[((Yi) − E(Yi))
2]

Statistics then suggests to estimate

µ by ȳ =
1

n

∑
i

yi

and σ2 by s2 =
1

n− 1

∑
i

(yi− ȳ)
2

The subsequent mathematics then yields Var(Ȳ) =
1

n
σ2

which statistics suggests to be estimated by
1

n
s2
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Multivariate normal sampling: assumptions

So, we have Y arising by iid sampling - recall:

The data matrix Y, formed by yij

has n lines, i = 1, . . . ,n

of p observations, j = 1, . . . ,p

which we model via n (column) random vectors y1, y2, . . . yn

such that outcomes of yT
1 , yT

2 , . . . yT
n give rows of Y

these yi’s have each p components, and are independent

that is, independent between themselves

(but not necessarily within, between their components)

and each has the distribution of some generic random vector y

And this distribution is now N(µ,Σ)
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Multivariate sampling: estimation

If y = (Y1,Y2, . . . ,YP)T is any of these random vectors, then

µ = E(y) = (E(Y1), . . . , E(Yp))
T and Σ = Var(X)

We estimate µ by the vector of columnwise means

ȳ =

(
1

n

∑
i

yi1, . . . ,
1

n

∑
i

yip

)T

and Σ by the sample variance-covariance matrix S, with elements

Sk` =
1

n− 1

∑
i

(yik− ȳk)(yi`− ȳ`)

Note: in what follows, we will abuse notation, using ȳ for
1

n
1TY,

the (column) vector of columnwise means (a non-random vector)

and also for the average yi =
1

n

∑
i

yi of random vectors (a random

vector)
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Multivariate normal sampling: distribution

The sum of independent random vectors with normal distribution
is normal; in particular, if y1, y2, . . . , yn are iid with N(µ,Σ)

then ȳ =
1

n

∑
i

yi is N

(
µ,

1

n
Σ

)
which implies that Σ−1/2(ȳ −µ)

√
n is N(0, I)

- if Σ is nonsingular, of course; then we have a matrix Σ−1/2

inverse to Σ1/2 and such that Σ−1/2Σ−1/2 = Σ−1

If Σ is nonsingular, then y1, y2, . . . , yn have a density which is a
product of individual densities; the maximum likelihood estimates
based on their outcomes y1, y2, . . . , yn are

µ̂ = ȳ =
1

n

∑
i

yi

Σ̂ =
1

n

∑
i

(yi− ȳ)(yi− ȳ)T =
n− 1

n
S

where S is the usual sample variance-covariance matrix
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Chi-square: review, essentially univariate

From now on, Σ is assumed positive definite - nonsingular, if not
stated otherwise

Chi-square distribution

If x is N(0, I), then xTx is χ2
p with p = dim x

Consequently, if x1, . . . , xn are iid N(µ,Σ)

then n(x̄ −µ)TΣ−1(x̄ −µ) is χ2
p

Asymptotics (n→∞, n >> p)

If x1, . . . , xn are iid and n− p is large

then
√
n(x̄ −µ) is approximately N(0,Σ)

and thus n(x̄ −µ)TΣ−1(x̄ −µ) is approximately χ2
p

and thus also n(x̄ −µ)TS−1(x̄ −µ) is approximately χ2
p

(we may replace Σ by S if n− p is large)
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Univariate: t and F

t distribution “Student’s t”

If U and V are independent, U is N(0, 1), V is χ2
k, then

U√
V
k

is tk

F distribution “Fisher’s(-Snedecor’s) F”

If U and V are independent, U is χ2
` , V is χ2

k, then

U

`

V

k

is F`,k

Note: if Z is tk, then Z2 is F1,k
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And now: Wishart distribution, univariate prelude

If X1,X2, . . . ,Xn are iid N(µ,σ2)

then X̄ and s2 are independent

and (n− 1)
s2

σ2
is χ2

n−1

We may think of it in a way that (n− 1)s2 is σ2χ2
n−1

where U being σ2χ2
n−1 means

U

σ2
is χ2

n−1

and the distribution of (n− 1)s2 is

the distribution of
n−1∑
i=1

Z2
i , when Zi are iid N(0,σ2)

This is a special case of the Wishart distribution for Σ = (σ2),
with n− 1 degrees of freedom

In the multivariate situation, U and Σ are matrices - so it is not
that straightforward to divide one by another; UΣ−1 may work
sometimes, but sometimes not
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Wishart distribution: definition (full force)

Suppose that random vectors z1, z2, . . . , zm are iid with N(0,Σ)

The distribution of
m∑
i=1

ziz
T
i is called

Wishart distribution with parameters

m (degrees of freedom, positive integer), and

Σ (any nonnegative definite symmetric matrix)

Notation: Wm(Σ) (it is often assumed that Σ is positive definite)

Also note: if Y is an m× p matrix whose rows are zT
i

then
m∑
i=1

ziz
T
i = YTY

If L is a diagonal matrix with diagonal elements `i

then YTLY =

m∑
i=1

`iziz
T
i
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Wishart distribution: first properties

If B has Wm(Σ) distribution

and A is a fixed (non-random), general q× p matrix,

then ATBA has Wm(ATΣA) distribution

If B1 has Wm1(Σ) and B2 has Wm2(Σ) distribution,

and B1 and B2 are independent,

then B1 + B2 has Wm1+m2(Σ) distribution

If B has Wm(Σ) distribution

and a is an arbitrary fixed (non-random) vector, aTΣa 6= 0,

then
aTBa

aTΣa
has χ2

m distribution

(which is then independent of a)

(This is how the division of U by Σ may eventually fly)
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Wishart distribution: the important property

Suppose that Y is an n× p matrix whose rows are yT
i ,

where yi are iid random vectors with distribution N(0,Σ);

if P is a symmetric idempotent matrix,

then YTPY has Wm(Σ) distribution,

where m is equal to the trace (rank) of P

As a consequence, if SY is the sample variance-covariance matrix

calculated out of Yi,

then the distribution of (n− 1)SY is Wn−1(Σ)
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Wishart distribution: one more property

For m > p and arbitrary p×p symmetric, nonnegative definite Σ,

Wm(Σ) is (absolutely) continuous (and thus has a density)

If B has Wm(Σ) distribution

and a is an arbitrary fixed (non-random) vector,

then
aTΣ−1a

aTB−1a
has χ2

m−p+1 distribution

(which is then independent of a)

(This is how the division of U by Σ is done in sampling...)
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An important corollary

If d and B are independent, d is N(0,Σ), B is Wm(Σ), then

m− p+ 1

p
dTB−1d =

dTΣ−1d

p

dTΣ−1d

dTB−1d

m− p+ 1

which is

χ2
p

p
χ2
m−p+1

m− p+ 1

- well, the latter is not a rigorous math formula, only some
shorthand, memory aid, for expressing that if U has χ2

p, V has
χ2
m−p+1 and U and V are independent (do not forget the latter!),

and that the expression above is equal to

U

p
V

m− p+ 1

which has the same distribution as
m− p+ 1

p
dTB−1d

- and thus the latter has distribution Fp,m−p+1
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Univariate sampling once again...

We have n numbers, y1,y2, . . . ,yn

they can be modeled as the outcomes of n random variables f
Y1,Y2, . . . ,Yn are iid with the distribution N(µ,σ2)

In such case, we have (for all i) µ = E(Yi)

and σ2 = Var(Yi) = E[((Yi) − E(Yi))
2]

Statistics then suggests to estimate

µ by ȳ =
1

n

∑
i

yi

and σ2 by s2 =
1

n− 1

∑
i

(yi− ȳ)
2

The subsequent mathematics then yields Var(Ȳ) =
1

n
σ2

which statistics suggests to be estimated by
1

n
s2

and also the standard deviation of Ȳ,
1√
n
σ, by

1√
n
s
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... concluded by the t-ratio (univariate)

t-ratio:
Ȳ −µ
s√
n

=
√
n
Ȳ −µ

s
(“Student’s t-ratio”)

has distribution tn−1, that is,
N(0,1)√
χ2
n−1
n−1

(symbolically)

which may be approximated by N(0, 1) for large n

And now : t-ratio squared: n
(Ȳ −µ)2

s2

has distribution F1,n−1, that is
χ2

1
1

χ2
n−1
n−1

(again symbolically)

and may be for large n approximated by χ2
1

symbolically: N(0,1)2
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Recall multivariate normal sampling now

Now, we have an array of numbers yij, forming the data matrix Y

- n vectors, i = 1, . . . ,n, of p observations, j = 1, . . . ,p

We model them via n random vectors y1, y2, . . . yn

those that give rows of Y as their outcomes

each with p components, and independent

that is, between themselves

(but not necessarily within, between their components)

with the same distribution N(µ,Σ)

If y is any of these random vectors,

then we have µ = E(y) and Σ = Var(y)
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And then

We estimate µ by the vector of the columnwise means

as we know that ȳ =
1

n

n∑
i−1

yi has distribution N

(
µ,

1

n
Σ

)
Then we estimate Σ by the sample variance-covariance matrix S,

as we know that (n− 1)S has distribution Wn−1(Σ)

And after we observe that (n− 1)S and ȳ are independent

We form not the t-ratio, but its square
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t-ratio (squared): multivariate (Hotelling’s T2)

T2 = n(ȳ −µ)TS−1(ȳ −µ) which has

(under all the assumptions above)

the distribution
(n− 1)p

n− p
Fp,n−1−p+1 =

(n− 1)p

n− p
Fp,n−p,

which actually means that

n− p

(n− 1)p
T2 =

n− p

(n− 1)p
n(ȳ −µ)TS−1(ȳ −µ)

has distribution Fp,n−p

(which for large n may be approximated by χ2
p)

Note: for p = 1 the first fraction is 1 and the distribution is F1,n−1

- same as for the univariate squared t-ratio.

Once again: we keep abusing the notation, using sometimes ȳ for

the (column) vector of columnwise means,
1

n
1TY (a non-random

vector), and sometimes for the average of random vectors yi (a
random vector) - depending on a context
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First applications

First applications are sort of analogs of univariate ones: we can

test a hypothesis

H0 : µ = µ0

using T2 = n(ȳ−µ0)
TS−1(ȳ−µ0) (substitute µ = µ0)

rejecting H0 if T2 >
(n− 1)p

n− p
Fp,n−p(α)

In the similar vein, we can form

confidence sets

µ in T2 becomes a variable

yielding a confidence set which is an ellipsoid such that

P
[
(ȳ −µ)TS−1(ȳ −µ) 6

(n− 1)p

n(n− p)
Fp,n−p(α)

]
= 1 −α.
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Paired comparisons

This is still an application in the univariate style: a paired t-test is
generalized to the situation when there are not pairs of one, but
several variables (the pairing is one-to-one)

The observations come as are n pairs of vectors y1i and y2i

similarly to the univariate, classical paired t-test

y1i and y2i are jointly normal

not necessary independent within or between themselves

but pairs of vectors are independent for different i = 1, 2, . . . ,n

and have the same distribution (independent of i = 1, 2, . . . ,n)

In such case, the (vector) differences zi = y1i− y2i can be modeled

by iid random vectors with normal distribution N(µ,Σ)

The hypothesis H0 : µ = 0 is then rejected if

T2 = nz̄TS−1z̄ >
(n− 1)p

n− p
Fp,n−p(α)
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And... a Technology of Its Own:
Repeated Measures
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Truly multivariate application: repeated measures

In a sense, it is a generalization of paired t-test again, but in
different direction: now we do not compare two paired groups of
vectors, but do it in a more involved way

We do it with a data matrix Y using (the matrix of) contrasts,
believing, as before, that the rows of Y are realizations of iid
random vectors yi

A contrast matrix is defined to be any k× p matrix C that has
sums of rows equal to zero; the comparisons we are after are
expressed through Cyi

Note: such a contrast matrix may contain maximally p−1 linearly
independent lines (why p−1 and not p? because of the summation
to 0 requirement)

Let us have a look at some examples with p = 4
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Linear models in R recalled: default

> sk=expand.grid(c("a","b","b","a"),c("a","b","a","b"))

> sk[,3] = rnorm(16)

> summary(lm(V3~Var1*Var2,data=sk))

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4713 0.5238 -0.900 0.386

Var1b 1.0322 0.7408 1.393 0.189

Var2b 0.5817 0.7408 0.785 0.448

Var1b:Var2b -1.0535 1.0476 -1.006 0.334

...

> dummy.coef(lm(V3~Var1*Var2,data=sk))

Full coefficients are

(Intercept): -0.4713099

Var1: a b

0.000000 1.032178

Var2: a b

0.0000000 0.5816988

Var1:Var2: a:a b:a a:b b:b

0.000000 0.000000 0.000000 -1.053515
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Linear models in R recalled: “theoretical default”

> options(contrasts=c("contr.sum","contr.poly"))

> summary(lm(V3~Var1*Var2,data=sk))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.07225 0.26191 0.276 0.787

Var11 -0.25271 0.26191 -0.965 0.354

Var21 -0.02747 0.26191 -0.105 0.918

Var11:Var21 -0.26338 0.26191 -1.006 0.334

...

> dummy.coef(lm(V3~Var1*Var2,data=sk))

Full coefficients are

(Intercept): 0.07224971

Var1: a b

-0.2527102 0.2527102

Var2: a b

-0.02747062 0.02747062

Var1:Var2: a:a b:a a:b b:b

-0.2633788 0.2633788 0.2633788 -0.2633788
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Examples of contrasts that carry special meaning

Compare all to a control:

> t(contr.sum(4))

1 2 3 4

[1,] 1 0 0 -1

[2,] 0 1 0 -1

[3,] 0 0 1 -1

Compare first to second, second to third, third to fourth,...:

> t(array(dim=c(4,3),c(1,-1,0,0,0,1,-1,0,0,0,1,-1)))

[,1] [,2] [,3] [,4]

[1,] 1 -1 0 0

[2,] 0 1 -1 0

[3,] 0 0 1 -1

Of course, we do not have to have k = 3 lines in each contrast;
we can consider contrasts also with k = 1 or k = 2 - but we know
k = p− 1 is the maximal possible number of linearly independent
lines in a contrast; in cases like above, the dependent lines could
be identified by simple logic
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More elaborate contrasts

Let a and A be two levels of the first factor, b and B two levels of
the seond factor, and the observations at every item correspond
to ab, aB, Ab, AB. Then the first contrast evaluates the effect of
the first factor, the second of the second factor, and the third one
the interaction:

> t(array(dim=c(4,3),c(1,1,-1,-1,1,-1,1,-1,1,-1,-1,1)))

[,1] [,2] [,3] [,4]

[1,] 1 1 -1 -1

[2,] 1 -1 1 -1

[3,] 1 -1 -1 1

Such an elaborate contrast is possible for p = 4 (or similar)

And again, the lines are independent

Incidentally, do we need independent lines in a contrast matrix?

Well, we will see that it is good to have it like that

226



Distribution of repeated measures

Once again, data matrix Y is assumed to arise from random normal
sampling: its lines are modeled as outcomes of (column) iid random
vectors yi with normal distribution N(µ,Σ)

then zi = Cyi can be modeled as iid random vectors

with normal distribution N(Cµ, CΣCT)

and we can use again the distributional mathematics (abusing once
again the notation and using ȳ also for columnwise means of Y
made into a column vector) for

T2 = nz̄TS−1
YCTz̄ = n(Cȳ)T(CSYCT)−1(Cȳ)

concluding that T2 has the distribution
(n− 1)k

n− k
Fk,n−k

Typically, we can test the hypothesis that all contrasts are zero
but also other hypothesis, for confidence sets, etc.

And it is all pretty much nothing else but applying the T2: not
necessarily to the original variables, but rather to the specific linear
combinations of those

So, do we see now why we need C to have independent lines?
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It is all in the formula for T2

The formula for T2 calls for the invertibility of CSCT; as this matrix
has dimension k× k, its rank must be k then

Now, the rank of a product of matrices is at most the maximum
or ranks of the matrices involved; consequently, the rank of CSCT

is not greater than the rank of S - so if we assume it is p, then
k cannot be greater than p. And the condition that rows sum to
zero - in matrix terms expressible as 1TC = 0 further drives rank
one more down: that is, k cannot be greater than p−1, otherwise
CSCT cannot have rank k

Of course, if k = p− 1, it is not guaranteed mathematically that
the rank is k; but from the statistical point of view, we can always
believe that elements of S are sufficiently “in a general position”

(Try generating a random matrix with components that come from
independent realizations of a distribution with a density; the result
is then invertible with probability one - and indeed in R, you likely
never encounter a noninvertible matrix this way

> solve(matrix(rnorm(100),10,10)) # repeat or alter if you wish

...

228



First, recall again: the data

> read.table("electro.d",header=T,row.names=1)

E1 E2 E3 E4 E5

1 500 400 98 200 250

2 660 600 600 75 310

3 250 370 220 250 220

4 72 140 240 33 54

5 135 300 450 430 70

6 27 84 135 190 180

7 100 50 82 73 78

8 105 180 32 58 32

9 90 180 220 34 64

10 200 290 320 280 135

11 15 45 75 88 80

12 160 200 300 300 220

13 250 400 50 50 92

14 170 310 230 20 150

15 66 1000 1050 280 220

16 107 48 26 45 51

We want to compare E1, E2, E3, E4, E5 - somehow in total. Lines
are related to a certain subject, hence independence within a line
may not be realistic; but independence between lines perhaps yes
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First taking logs (more conforming to normal)

> elel=log(read.table("electro.d",header=T,row.names=1))

> elel

E1 E2 E3 E4 E5

1 6.214608 5.991465 4.584967 5.298317 5.521461

2 6.492240 6.396930 6.396930 4.317488 5.736572

3 5.521461 5.913503 5.393628 5.521461 5.393628

4 4.276666 4.941642 5.480639 3.496508 3.988984

5 4.905275 5.703782 6.109248 6.063785 4.248495

6 3.295837 4.430817 4.905275 5.247024 5.192957

7 4.605170 3.912023 4.406719 4.290459 4.356709

8 4.653960 5.192957 3.465736 4.060443 3.465736

9 4.499810 5.192957 5.393628 3.526361 4.158883

10 5.298317 5.669881 5.768321 5.634790 4.905275

11 2.708050 3.806662 4.317488 4.477337 4.382027

12 5.075174 5.298317 5.703782 5.703782 5.393628

13 5.521461 5.991465 3.912023 3.912023 4.521789

14 5.135798 5.736572 5.438079 2.995732 5.010635

15 4.189655 6.907755 6.956545 5.634790 5.393628

16 4.672829 3.871201 3.258097 3.806662 3.931826
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Contrasts and their transposes

Now, contrasts were defined to be k× p matrices, with each row
summing to 0 - that was convenient in the stochastic assumptions,
where observations were modeled as column p× 1 vectors.

With an n×p data matrix Y, these observations correspond to its
rows. Hence we have to multiply Y from right right by a p × k
transposed contrast - a matrix that has columns, not rows, now
summing to zero.

In what follows, we show these contrasts as they appear in R -
that is, in their transposed form
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Once again some of the examples transposed

Compare all to control

> contr.sum(4)

[,1] [,2] [,3]

1 1 0 0

2 0 1 0

3 0 0 1

4 -1 -1 -1

Compare first to second, second to third, third to fourth,...

> array(dim=c(4,3),c(1,-1,0,0,0,1,-1,0,0,0,1,-1))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] -1 1 0

[3,] 0 -1 1

[4,] 0 0 -1
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More elaborate contrasts again

Let a and A be two levels of the first factor, b and B two levels of
the seond factor, and the observations at every item correspond to
ab, aB, Ab, AB. Then the first contrast (first column) evaluates
the effect of the first factor, the second (column) of the second
factor, and the third one the interaction (between those):

> array(dim=c(4,3),c(1,1,-1,-1,1,-1,1,-1,1,-1,-1,1))

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 -1 -1

[3,] -1 1 -1

[4,] -1 -1 1
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And now: the analysis of
(logarithms of) electrodes

A potentially useful contrast matrix:

> elec = array(dim=c(5,4),

+ c(1,-1,0,0,0,0,1,-1,0,0,0,0,1,-1,0,0,0,0,1,-1))

> elec

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] -1 1 0 0

[3,] 0 -1 1 0

[4,] 0 0 -1 1

[5,] 0 0 0 -1

> elelc=as.matrix(elel) %*% elec

Some exploratory graphical analysis first:

> boxplot(as.data.frame(elelc))

> plot(as.ts(elelc),plot.t="single",type="b",pch=1:4,lty=1:4)
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Electrodes: boxplots of contrasts
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Contrasts: objectwise
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Contrasts: principal components
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Finally, we can look at Hotelling’s T2

> dim(elelc)

[1] 16 4

> elmu = apply(elelc,2,mean); elmu

[1] -0.4932261 0.2166766 0.4690089 -0.1009543

> elis = solve(var(elelc)) # oh: I am not supposed to do this!

> 1-pf(elmu %*% elis %*% elmu*16*12/(4*15),4,12)

0.1044359

First p-value here. Now, there is a suspicion that 15th subject is
somewhat out of the ordinary (an “outlier”, so to say) - how about
trying the analysis without it?

> elmu=apply(elelc[-15,],2,mean)

> elis=solve(var(elelc[-15,]))

> 1-pf( elmu %*% elis %*% elmu * 15*11/(4*14),4,11)

0.1278355

How about looking only on the 1st and 3rd contrasts (together)?

> elmu = apply(elelc[,c(1,3)],2,mean)

> elis = solve(var(elelc[,c(1,3)]))

> 1-pf(elmu %*% elis %*% elmu*16*14/(2*15),2,14)

0.06439189
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T2 continued

And now, look at the 1st and 3rd contrasts separately

> elmu = mean(elelc[,1])

> elis = solve(var(elelc[,1]))

> 1-pf(elmu %*% elis %*% elmu*16*15/(1*15),1,15)

0.02852685

> elmu = mean(elelc[,3])

> elis = solve(var(elelc[,3]))

> 1-pf(elmu %*% elis %*% elmu*16*15/(1*15),1,15)

0.1010562

Yeah, so the 1st one would yield some significance - only, we could
arrive to this by a simple paired t-test...

> 4*mean(elelc[,1])/sqrt(var(elelc[,1]))

-2.422740

> qt(.025,15)

-2.131450

> 2*(1-pt(abs(4*mean(elelc[,1]))/sqrt(var(elelc[,1])),15))

0.02852685

Isn’t there a function for t-test in R?
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Surely is!

> t.test(elel[,1],elel[,2],paired=TRUE)

Paired t-test

data: elel[, 1] and elel[, 2]

t = -2.4227, df = 15, p-value = 0.02853

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.92715075 -0.05930155

sample estimates:

mean of the differences

-0.4932261
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Isn’t there any package for Hotelling?

> summary(manova(elelc~1),intercept=T,test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

(Intercept) 1 0.81125 2.43374 4 12 0.1044

Residuals 15

> summary(manova(elelc~1),intercept=T,test="W")

Df Wilks approx F num Df den Df Pr(>F)

(Intercept) 1 0.55211 2.43374 4 12 0.1044

Residuals 15

> summary(manova(elelc[-15,]~1),intercept=T,test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

(Intercept) 1 0.82388 2.26568 4 11 0.1278

Residuals 14

> summary(manova(elelc[-15,]~1),intercept=T,test="R")

Df Wilks approx F num Df den Df Pr(>F)

(Intercept) 1 0.54828 2.26568 4 11 0.1278

Residuals 14

> summary(manova(elelc[-15,]~1),intercept=T,test="P")

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.45172 2.2657 4 11 0.1278

Residuals 14
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Hotelling package continued

> summary(manova(elelc[,c(1,3)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.32418 3.3577 2 14 0.06439 .

...

> summary(manova(elelc[,1]~1),intercept=T)

Error in manova(elelc[, 1] ~ 1) : need multiple response

> summary(aov(elelc[,1]~1),intercept=T)

Df Sum Sq Mean Sq F value Pr(>F)

(Intercept) 1 3.892 3.892 5.87 0.0285 *

...

Recall:

> t.test(elel[,1],elel[,2],paired=TRUE)

Paired t-test

data: elel[, 1] and elel[, 2]

t = -2.4227, df = 15, p-value = 0.02853

...
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Second thoughts: how about trying
some other contrast matrix?

> contr.sum(5)[c(5,1:4),]

[,1] [,2] [,3] [,4]

5 -1 -1 -1 -1

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

> elc=as.matrix(elel) %*% contr.sum(5)[c(5,1:4),]

> boxplot(elc)
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Boxplots of contrasts: not that bad

1 2 3 4

-2
-1

0
1
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Oops... was this expected?

> summary(manova(elc~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.44789 2.4337 4 12 0.1044

Residuals 15

Well, was to be expected... or not? Also

> summary(manova(elc[-15,]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.45172 2.2657 4 11 0.1278

Residuals 14
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For subsets, however...

> summary(manova(elc[,c(1,2,3)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.42713 3.2309 3 13 0.05757 .

...

> summary(manova(elc[,c(1,2)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.3549 3.851 2 14 0.0465 *

...

> summary(manova(elc[,c(1,3)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.4194 5.0564 2 14 0.02224 *

...

Note the “progress”: originally we have been only able to isolate
one contrast significant at α = 0.05. Now we are able to pick up
two...

Shall we continue? (Better not, but I did...)
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Incidentally, the boxplots of original logarithms
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And something better than boxplots here(size!)

E1 E2 E3 E4 E5

3
4

5
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7
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A fancy contrast matrix?

Some impasses are inevitable:

> cn = rbind(c(-1,-1,0,0),c(1,0,-1,0),c(0,0,0,-1),

+ c(0,0,0,1),c(0,1,1,0))

> cn

[,1] [,2] [,3] [,4]

[1,] -1 -1 0 0

[2,] 1 0 -1 0

[3,] 0 0 0 -1

[4,] 0 0 0 1

[5,] 0 1 1 0

> ecn=as.matrix(elel) %*% cn

> summary(manova(ecn[,c(1,2,3)]~1),intercept=T)

Error in summary.manova(manova(ecc[, c(1, 2, 3)] ~ 1), intercept = T, :

residuals have rank 2 < 3

> summary(manova(ecn[,c(1,3)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.42668 5.2097 2 14 0.02036 *

...

I told you: it has to have independent lines - in this case, columns
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Pairwise t-tests? Bonferroni? Holm?

> t.test(elel$E2,elel$E5,paired=T)$p.value

[1] 0.009286861

> t.test(elel$E2,elel$E4,paired=T)$p.value

[1] 0.02635447

> t.test(elel$E1,elel$E2,paired=T)$p.value

[1] 0.02852685

> t.test(elel$E3,elel$E4,paired=T)$p.value

[1] 0.1010562

> t.test(elel$E3,elel$E5,paired=T)$p.value

[1] 0.1023432

> t.test(elel$E2,elel$E3,paired=T)$p.value

[1] 0.3204591

> t.test(elel$E1,elel$E3,paired=T)$p.value

[1] 0.4026263

> t.test(elel$E1,elel$E4,paired=T)$p.value

[1] 0.5657955

> t.test(elel$E4,elel$E5,paired=T)$p.value

[1] 0.6492741

> t.test(elel$E1,elel$E5,paired=T)$p.value

[1] 0.6964895
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Maybe just a few but selected p-values

> summary(manova(elc[,c(1,2,3)]~1),intercept=T) # 5 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.42713 3.2309 3 13 0.05757 .

...

> summary(manova(elc[,c(1,2,4)]~1),intercept=T) # 4 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.42832 3.2467 3 13 0.05686 .

...

> summary(manova(elc[,c(1,3,4)]~1),intercept=T) # 3 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.44756 3.5106 3 13 0.04628 *

...

> summary(manova(elc[,c(2,3,4)]~1),intercept=T) # 2 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.20921 1.1464 3 13 0.3672

...

(I like the last one, in a sense)
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So what?

And 1 out? Only possible with the other contrast matrix...

> summary(manova(elelc[,c(2,3,4)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.39456 2.824 3 13 0.08009 .

...

Ok, if we single 2 out, we are left with 1,3,4,5. The 3 looks quite
spread, it may spoil the significance

> summary(manova(elc[,c(3,4)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.022733 0.16283 2 14 0.8513

...

Seems like 1,4,5 are quite close... So how about abandoning 3
(see t-tests), keeping 2, and out of 1,4,5 keep 5 (see t-tests)
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Like this?

> t.test(elel$E2,elel$E5,paired=T)$p.value

[1] 0.009286861

> t.test(elel$E2,elel$E4,paired=T)$p.value

[1] 0.02635447

> t.test(elel$E1,elel$E2,paired=T)$p.value

[1] 0.02852685

> t.test(elel$E2,elel$E3,paired=T)$p.value

[1] 0.3204591

> summary(manova(elc[,c(2,3,4)]~1),intercept=T) # 2 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.26456 1.1464 3 13 0.3672

...

> summary(manova(elc[,c(3,4)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.022733 0.16283 2 14 0.8513

...

Oops... 0.05/6 = 0.008333

0.05/5 = 0.01 > 0.009
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Omit one!

> t.test(elel$E2,elel$E5,paired=T)$p.value

[1] 0.009286861

> t.test(elel$E2,elel$E4,paired=T)$p.value

[1] 0.02635447

> t.test(elel$E1,elel$E2,paired=T)$p.value

[1] 0.02852685

> summary(manova(elc[,c(2,3,4)]~1),intercept=T) # 2 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.20921 1.1464 3 13 0.3672

...

> summary(manova(elc[,c(3,4)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.022733 0.16283 2 14 0.8513

...
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Or maybe better

> t.test(elel$E2,elel$E5,paired=T)$p.value

[1] 0.009286861

> t.test(elel$E2,elel$E4,paired=T)$p.value

[1] 0.02635447

> t.test(elel$E1,elel$E2,paired=T)$p.value

[1] 0.02852685

> summary(manova(elc[,c(2,3,4)]~1),intercept=T) # 2 out

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.20921 1.1464 3 13 0.3672

...

> summary(manova(elc[,c(3,4)]~1),intercept=T)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.022733 0.16283 2 14 0.8513

...

That is, keep 2 and 5 (perhaps...)
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More Extending Classics:
Two-Sample Hoteling’s T2
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Postponed past MANOVA
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Trying to Extend Classics:
Linear Model and ANOVA
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It starts easy: estimation

As in the univariate case, we are going to use least squares,
which tare not only motivated by numerical convenience (quadratic
minimization problem leads to linear equations), Gauss-Markov
theory (best linear unbiased estimate), and result as maximum
likelihood estimates under normality assumption,

but have also a particular advantage in the multivariate context:
estimation of a multivariate model splits into the estimation of p
univariate ones - minimizing the left-hand sum amounts to separate
minimizations of the right-hand sums in∑

i,j

(yij− xT
iβj)

2 =
∑
i

(yi1 − xT
iβ1)

2 + · · ·+
∑
i

(yip− xT
iβp)

2

This is not true in general for other univariate regression estimators
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In matrix language it looks almost the same

First, X is an n × q matrix of covariates, same for the all p
responses yj, j = 1, 2, . . . ,p; we have p linear models

yj = Xβj+ εj

Now, we glue columnwise all p

responses yj into an n× p matrix Y

parameter vectors βj into an q× p matrix B

εj vectors into one n× p matrix E

to obtain the formulation of the multivariate linear model

Y = XB+E

Due to the aforementioned split of the least-squares criterion, the
p prescriptions for estimates in the p linear models

β̂j = (XTX)−1XTyj

can be thus aggregated into one

B̂ = (XTX)−1XTY
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Componentwise

yij = xT
i·β·j+ εij, i = 1, . . . ,n, j = 1, . . . ,p X =


xT

1·
...

xT
i·...

xT
n·



Typical modeling assumptions: εi are now rows of E =


εT

1·
...
εT
i·...
εT
n·


E(εi·) = 0

Var(εi·) = Σ (not depending on j)

Cov(εi·,εk·) = 0 for i 6= k, or stronger: rows εi· are independent

also normality assumption: εi· are independent, each N(0,Σ)
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Verifying the maximum likelihood claim

If we assume a normal multivariate linear model, in which
all lines of the matrix E arise via iid sampling with the
common distribution being normal, N(0,Σ), wioth positive definite
(nonsingular) Σ (so that its density exists). we can write the
negative of the log-likelihood is, up to an additive and multiplicative
constants that don’t affect the outcomes of minimization, as∑
i

log det(Σ) + (yi·− xT
i·B)Σ−1(yi·− xT

i·B)T

= n log det(Σ) +
∑
i

tr
(
(yi·− xT

i·B)Σ−1(yi·− xT
i·B)T

)
= n log det(Σ) + tr

(∑
i

(yi·− xT
i·B)T(yi·− xT

i·B)Σ−1
)

= n log det(Σ) + tr
(
(Y − XB)T(Y − XB)Σ−1

)
If Σ is fixed, then the first term does not depend on B and the
second one is minimized by B equal to the least squares estimator B̂:
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Verifying continued

tr
(
(Y − XB)T(Y − XB)Σ−1

)
= tr

(
(Y − XB̂)T(Y − XB̂)Σ−1

)
+ tr

(
(XB̂ − XB)T(XB̂ − XB)Σ−1

)
= tr

(
(Y − XB̂)T(Y − XB̂)Σ−1

)
+ tr

(
(XB̂ − XB)Σ−1(XB̂ − XB)T

)
and the last term is the trace of the nonnegative definite matrix.

Put B = B̂; let A = (Y − XB̂)T(Y − XB̂)

the negative log-likelihood becomes, if A is nonsingular,

n log det(Σ) + tr(AΣ−1) = −n log det(Σ−1) + tr(AΣ−1)

= −n log det(AΣ−1) +n log det A + tr(AΣ−1)

which is minimized by Σ̂ =
1

n
A if A is fixed (and nonsingular)
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Least squares: in X pretty much the same

We have X, which generates the model M(X) = Im(X)

with dimension typically equal to the rank p of X

Then X0 generates a submodel M(X0) = Im(X0) ⊂ Im(X)

with dimension, say, p0

Least squares estimates yield corresponding projections:

XB̂ onto Im(X) and XB̂0 onto Im(X0)

We obtain the residuals, which then belong to the orthogonal
complements:

Y − XB̂ to Im(X)⊥ with dimension n− p

traditionally referred to as df (degrees of freedom)

Y − XB̂0 to Im(X0)
⊥ with dimension n− p0
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The ANOVA decomposition

Then XB̂ − XB̂0 belongs to Im(X) ∩ Im(X0)
⊥ which has dimension

p− p0, which is traditionally referred to as degrees of freedom of
the submodel (null hypothesis) dfH; it is the rank of XB̂ − XB̂0

Therefore, any column of XB̂ − XB̂0 is orthogonal to any column
of Y − XB̂ - the fact that yields...

T = (Y − XB̂0)
T(Y − XB̂0)

= (Y − XB̂ + XB̂ − XB̂0)
T(Y − XB̂ + XB̂ − XB̂0)

= (Y − XB̂)T(Y − XB̂) + (XB̂ − XB̂0)
T(XB̂ − XB̂0)

= W + (T − W) = W + H

by the orthogonality of columns of Y − XB̂ and XB̂ − XB̂0 - this
also implies that under iid sampling model for the matrix E these
matrices are uncorrelated, which under assumption of normal
distribution further strengthens to independence and subsequently
to the independence of W and H

Note that the rank of H is equal to the rank of dfH, as the rank of
(XB̂ − XB̂0)

T(XB̂ − XB̂0) is equal to the rank of XB̂ − XB̂0
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ANOVA decomposition: uni- and multivariate

In the univariate case, the elements of this decomposition are
nonnegative numbers; now they are nonnegative definite matrices.
Following the univariate analogy, we compare matrices “for size”

In univariate setting, we have the decomposition

RSSH = RSS+ (RSSH−RSS)

containing nonnegative numbers - corresponding in our notation
to

T = W + (T − W) = W + H

- the decomposition to nonnegative definite matrices

These represent minimized sum of squares, and serve also as a
basis for variance-covariance estimation

Unlike in the univariate case, we cannot calculate a simple ratio
(RSSH−RSS)/RSS; even if we replace it by HW−1 (or W−1H), we
face the problem of evaluating “the size” of the resulting p × p
matrix
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First step: discriminants (canonical variates)

The natural first step to such an evaluation are the eigenvalues of
HW−1 (we know8 those are the same, at least the nonzero ones,
as the eigenvalues of W−1H)

(It can be also shown, at least for some types of hypotheses, that
if the tests have to be invariant with respect to origin and scale of
the data, the test statistic must depend on these eigenvalues)

The eigenvalues of HW−1 appear in the solution of the optimization
problem9 that seeks x maximizing

xTHx

xTWx

Vectors x maximizing this expression form a direction: if x is a
maximizer, then so is cx, for any c 6= 0. If we project the data Y
on the direction (picking up x with ‖x‖ = 1), we obtain the first
linear discriminant

8see Problem 1
9see Problem 9
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And so on

The direction of the second linear discriminant is obtained by the
maximization of the same expression as above, only restricted to
the directions orthogonal to the direction of the first discriminant

The direction of the third linear discriminant then maximizes the
same expression, among directions orthogonal to the directions of
the first and second one - and so on

The maximizing directions correspond to the eigenvalues of HW−1,
the directions are the corresponding eigenvectors, and linear
discriminants are projections of Y to these directions

And all this makes sense only when the maximization and ensuing
projections are nontrivial: linear discriminants thus correspond only
to the nonzero eigenvalues of HW−1 - their number is thus related
to the number of nonzero eigenvalues (= rank) of HW−1

- which is dfH, the rank of H, as that is less than df, the rank of W

Linear discriminants are mostly known as Fisher linear discriminants
in the specific setting of one-way layout
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Recall first: one-way layout univariate

The predicted variable is yki, comes in g = 1, . . . ,K groups

The model is ygi = µg+ εgi (or some equivalent form)

The sizes of groups are not necessarily equal: n = n1 + · · ·+nK
for each g, i = 1, 2, . . . ,ng

The errors εgi are independent and their distribution is N(0,σ2)
(the same variance for all errors!)

The hypothesis of interest is: all µg equal, µ1 = µ2 = · · · = µK
The predicted values via the least-squares method are:

under the model: ȳg, the mean in the group

under restricted model (hypothesis): ȳ, the mean of all ygi
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One-way layout: univariate - testing

Submodel (restricted model): we fit the same µ to all ygi
its estimate is grand mean ȳ, over all ygi
the minimized sum of squares is T =

∑
(ygi− ȳ)

2

divided by n− 1 degrees of freedom gives the estimate s2
T

Full model: we fit not necessarily same µg to each group of ygi
the estimates are group means ȳg
the minimized sum of squares is W =

∑
(ygi− ȳg)

2

divided by n−K degrees of freedom gives s2 = s2
W

The ratio

T −W

n− 1 − (n−K)
W

n−K

=

T −W

K− 1
W

n−K

is good for testing

if the assumptions hold, its distribution is F(K−1),(n−K)

and if the hypothesis is true, it tends to be small
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One-way layout: multivariate

The response is ygij, coming in g = 1, . . . ,K groups
and having j = 1, ...,p components: it is p-dimensional

Again, the sizes of groups are not necessarily equal:
n = n1 + · · ·+nK and for each g, i = 1, 2, . . . ,ng

The model is ygij = µgj+ εgij
µg is a vector with components µgj
εgi a random vector with components εgij
and ygi a vector with components ygij - the transposed row

of Y, as all vectors are p-dimensional column vectors

The errors εgi are independent and have distribution N(0,Σ)
(the same variance-covariance matrix for all errors!)

The hypothesis of interest: all µg equal

Prediction from via the least-squares fit
under model, and
under submodel (restricted model, hypothesis)

271



One-way layout: multivariate - testing

Submodel (restricted model): we fit the same µ to all ygi
its estimate is the grand columnwise of Y mean ȳ = (ȳ1, . . . , ȳp)T

the estimate of variance-covariance matrix is obtained from

the matrix T with elements Trs =
∑
g,i

(ygir− ȳr)(ygis− ȳs)

T =
∑
g

ng∑
i=1

(ygi− ȳ)(ygi− ȳ)T

The full model: each µk in each group of yki is fit separately
the estimates are group means ȳg = (ȳg1, . . . , ȳgp)T

the estimate of variance-covariance matrix is obtained from

the matrix W with elements Wrs =
∑
g,i

(ygir− ȳgr)(ygis− ȳgs)

W =
∑
g

ng∑
i=1

(ygi− yg)(ygi− yg)
T

Finally, the matrix H = T − W =
∑
g

ng(ȳg− ȳ)(ȳg− ȳ)T

Note: dividing by degrees of freedom is omitted, as the distribution
theory now does not require it
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So, how to evaluate the size by one number?

Among various possibilities that have been considered, people
eventually settled for the following four

1. Hotelling’s–Lawley’s trace (a direct generalization of F ratio):

tr
(
HW−1

)
= tr

(
(T − W)W−1

)
2. Roy’s maximal eigenvalue: of HW−1 = (T − W)W−1

3. Pillai’s (or Pillai’s-Bartlett’s) trace:

tr
(
HT−1

)
= tr

(
(T − W)T−1

)
= tr

(
H(W + H)−1

)
= tr

(
HW−1(I + HW−1)−1

)
4. Wilks’s

λ =
det W

det T
=

det W

det (W + H)
= det

(
(I + HW−1)−1

)
As stipulated, all of them are functions of the eigenvalues of HW−1.
Recall that AB and BA have the same nonzero eigenvalues10;
in particular, maximal eigenvalues of AB and BA are equal; the
eigenvalues of the inverse matrix are the reciprocals of the original
ones; the eigenvalues of I + A are 1+ the eigenvalues of A

10Problem 1
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Therefore

tr AB = tr BA; also, trace is the sum of eigenvalues

Determinant is the product of eigenvalues

Let λ1 > λ2 > . . . be eigenvalues of HW−1 = (T−W)W−1 = TW−1−I

Let ξ1 > ξ2 > . . . be eigenvalues of

HT−1 = T−1H = T−1(T − W) = I − T−1W

We have that ξi =
λi

1 + λi
, λi =

ξi

1 − ξi

1. tr
(
HW−1

)
=

∑
i

λi =
∑
i

ξi

1 − ξi

2. The maximal eigenvalue of HW−1 is λ1 =
ξ1

1 − ξ1

3. tr
(
HT−1

)
=

∑
i

λi

1 + λi
=

∑
i

ξi

4.
det(W)

det(T)
=

∏
i

1

1 + λi
=

∏
i

(1 − ξi)
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Apocrypha about distributions

Notation:

ν: “residual degrees of freedom”: n− dimM(X)
νH: “hypothesis degrees of freedom”: dimM(X) − dimM(XH)
p: the dimension of the response
t = min{p,νH}, u = max{p,νH}, λ = 1

4(pνH− 2),
r = 1

2(|p− νH|− 1), k = ν− p− 1, m = ν+ 1
2νH− 1

2(p+ 1),

There we quite a few approximations proposed (the following are
not the only ones)

1. The distribution of Roy’s maximal eigenvalue (root)

Θ which is
u

ν−u− 1
Fu,ν−u−1

gives only a lower bound on the approximate p-value

(hence its significance is often ignored - especially when other
criteria contraindicate it)

2. Hotelling’s-Lawley’s trace U
(tk+ 2)

t2(2r+ t+ 1)
U is approximately Ft(2r+t+1),tk+2

275



More apocrypha

3. Pillai’s trace V:

k+ t+ 1

2r+ t+ 1

V

t−V
is approximately Ft(2r+t+1),t(k+t+1)

4. Wilks’s Λ:

Bartlett’s approximation: −m logΛ is approximately χ2
pνH

Rao’s transformation:
1 −Λ1/s

Λ1/s

ms− 2λ

pνH
is

approximately (exactly if t 6 2) FpνH,ms−2λ

non-integer degrees of freedom possible here

s =

√
p2ν2

H−4

p2+ν2
H−5

if p2 + ν2
H− 5 > 0, otherwise s = 1

All of the alternatives are approximated by F for certain constant
multiples, as listed above; some of the alternatives feature also
some other approximations, or even “exact” distributions (exact
under exact normality).
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Distributions: summary (remember this!)

Once again: only lower bound on p-value for Roy; hence generally
disregarded if others are not significant

Wilks’s F approximation may have non-integer (second) degrees of
freedom; it has also standard approximation, by χ2, as a likelihood
ratio - and also an exact distribution can be handled numerically

All four alternatives approximately equivalent for large sample sizes

All four are equivalent exactly

for p = 1, that is, in the univariate case
when they reduce to the usual F-ratio

and also when dfH = 1 - in particular for

one-sample or two-sample models - then equivalent to
one-sample or two-sample Hotelling T2, respectively

Some recommend as the first choice Pillai’s trace V, because of
its robustness; then Wilks’s Λ; then Hotelling’s-Lawley’s trace U

277



Likelihood ratio motivation for Wilks’s Λ

Under normal distribution of errors

the maximized value of the likelihood is
e−np/2

(2π)np/2(det Σ̂)n/2

where Σ̂ is the maximum likelihood estimate of Σ

The likelihood ratio for testing the submodel is thus

(det Σ̂H)−n/2

(det Σ̂)−n/2
=

(
det Σ̂

det Σ̂H

)n/2

which is

equivalent to Wilks’s Λ =
det Σ̂

det Σ̂H
=

det W

det T

Note that in the univariate case, this is equal to
RSS

RSSH

which is equivalent to the usual F-ratio, as it is equivalent to

RSSH

RSS
=
RSS+RSSH−RSS

RSS
= 1 +

RSSH−RSS

RSS

One can use then the (general) Bartlett approximation for
likelihood ratios: −m logΛ is approximately χ2

pνH
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Exact distribution for Wilks’s Λ

If X and Y are independent and have both Gamma distribution
with parameters (αX,γ) and (αY,γ) respectively, then the ratio
X/(X+ Y) has Beta distribution with parameters (αX,αY)

A multivariate analog with Wishart distribution is: if S1 and S2 are
independent and have Wishart distributions Wn1(Σ) and Wn2(Σ)
respectively, then the distribution of

Λ =
det(S1)

det(S1 + S2)

does not depend on Σ, only on its dimension p and n1,n2. It is
known as Wilks’s or also multivariate Beta distribution, as it is a
product of d independent random variables with Beta distribution

Its logarithm (or actually, − log) can be handled numerically

...

279



Example: dogs

5 groups:

> levels(as.factor(Canine$Group))

[1] "Cuon" "GoldenJackal" "IndianWolf"

[4] "ModernThaiDog" "PrehistoricThaiDog"

> Canine

Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 Sex Group

1 1 123 10.1 23 23 19 7.8 32 33 5.6 Male ModernThaiDog

2 2 137 9.6 19 22 19 7.8 32 40 5.8 Male ModernThaiDog

3 3 121 10.2 18 21 21 7.9 35 38 6.2 Male ModernThaiDog

4 4 130 10.7 24 22 20 7.9 32 37 5.9 Male ModernThaiDog

5 5 149 12.0 25 25 21 8.4 35 43 6.6 Male ModernThaiDog

...

> attach(Canine)

> nrow(Canine)

[1] 77

Is there a way to visualize this?
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Dogs: plotting (one way of)

> stars(Canine[,2:10])

> stars(Canine[,2:10],labels=Canine$Group,lwd=1)

> stars(Canine[,2:10],labels=as.numeric(as.factor(Canine$Group)),

+ lwd=1)

> stars(dogs[,2:10],lwd=0.7,

+ labels=strtrim(as.character(dogs$Group),6), cex=0.7, flip=F,

+ col.stars=

+ c("pink","grey","white")[as.numeric(as.factor(dogs$Sex))],ncol=7)
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Dogs: profiles (another plotting method)

> plot(c(1:9,1:9),

+ c(apply(Canine[,2:10],2,max),apply(Canine[,2:10],2,min)),

+ type=’n’,xlab=’’,ylab=’’)

> for (k in (1:77)[Group=="Cuon"])

+ lines(1:9,Canine[k,2:10],pch=1,type=’b’,col=’black’)

> for (k in (1:77)[Group=="GoldenJackal"])

+ lines(1:9,Canine[k,2:10],pch=2,type=’b’,col=’yellow’)

> for (k in (1:77)[Group=="IndianWolf"])

+ lines(1:9,Canine[k,2:10],pch=3,type=’b’,col=’green’)

> for (k in (1:77)[Group=="ModernThaiDog"])

+ lines(1:9,Canine[k,2:10],pch=4,type=’b’,col=’magenta’)

> for (k in (1:77)[Group=="PrehistoricThaiDog"])

+ lines(1:9,Canine[k,2:10],pch=5,type=’b’,col=’blue’)
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Star plot: this is the default now
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Is this one better?

ModernThaiDog
ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog
ModernThaiDog

ModernThaiDog
GoldenJackal

GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal
GoldenJackal

GoldenJackal

Cuon
Cuon

Cuon
Cuon

Cuon
Cuon

Cuon
Cuon

Cuon

Cuon
Cuon

Cuon
Cuon

Cuon
Cuon

Cuon
Cuon

IndianWolf

IndianWolf
IndianWolf

IndianWolf
IndianWolf

IndianWolf
IndianWolf

IndianWolf
IndianWolf

IndianWolf

IndianWolf
IndianWolf

IndianWolf
IndianWolf

PrehistoricThaiDog
PrehistoricThaiDog

PrehistoricThaiDog
PrehistoricThaiDog

PrehistoricThaiDog

PrehistoricThaiDog
PrehistoricThaiDog

PrehistoricThaiDog
PrehistoricThaiDog

PrehistoricThaiDog
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Or this one?

4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 3

3 3 3 3 3 3 3 3 3

3 3 3 3 5 5 5 5 5

5 5 5 5 5
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How about this one?

Modern Modern Modern Modern Modern Modern Modern

Modern Modern Modern Modern Modern Modern Modern

Modern Modern Golden Golden Golden Golden Golden

Golden Golden Golden Golden Golden Golden Golden

Golden Golden Golden Golden Golden Golden Golden

Golden Cuon Cuon Cuon Cuon Cuon Cuon

Cuon Cuon Cuon Cuon Cuon Cuon Cuon

Cuon Cuon Cuon Cuon Indian Indian Indian

Indian Indian Indian Indian Indian Indian Indian

Indian Indian Indian Indian Prehis Prehis Prehis

Prehis Prehis Prehis Prehis Prehis Prehis Prehis

(Colors show sex: male, female, or unknown)
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Profiles

2 4 6 8
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0
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0
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Fancy plotting through glyphs: Chernoff faces

Index
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Indian

Index

Indian

Index

Indian

Index

Indian
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Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Index

Prehis

Faces of dogs I

Visualizing variables by various facial characteristics
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More original look

Modern Modern Modern Modern Modern Modern Modern

Modern Modern Modern Modern Modern Modern Modern

Modern Modern Golden Golden Golden Golden Golden

Golden Golden Golden Golden Golden Golden Golden

Golden Golden Golden Golden Golden Golden Golden

Golden Cuon Cuon Cuon Cuon Cuon Cuon

Cuon Cuon Cuon Cuon Cuon Cuon Cuon

Cuon Cuon Cuon Cuon Indian Indian Indian

Indian Indian Indian Indian Indian Indian Indian

Indian Indian Indian Indian Prehis Prehis Prehis

For how to do it in R, google up “Chernoff faces R”
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And now the rigorous stuff

> respo <- cbind(X1,X2,X3,X4,X5,X6,X7,X8,X9)

> summary(manova(respo~Group, data=Canine), test=’H’)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

Group 4 25.129 43.627 36 250 < 2.2e-16 ***

Residuals 72

> summary(manova(respo~Group, data=Canine), test=’R’)

Df Roy approx F num Df den Df Pr(>F)

Group 4 16.348 121.699 9 67 < 2.2e-16 ***

Residuals 72

> summary(manova(respo~Group, data=Canine), test=’P’)

Df Pillai approx F num Df den Df Pr(>F)

Group 4 2.5892 13.6622 36 268 < 2.2e-16 ***

Residuals 72

> summary(manova(respo~Group, data=Canine), test=’W’)

Df Wilks approx F num Df den Df Pr(>F)

Group 4.00 0.0022 27.6656 36.00 241.57 < 2.2e-16 ***

Residuals 72.00
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More sophisticated modeling possible
> summary(manova(respo~Group*Sex, data=Canine),test=’H’)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

Group 4 31.664 51.454 36 234 < 2.2e-16 ***

Sex 1 0.486 3.242 9 60 0.002866 **

Group:Sex 3 0.656 1.426 27 176 0.091126 .

Residuals 68

> summary(manova(respo~Group*Sex, data=Canine),test=’R’)

Df Roy approx F num Df den Df Pr(>F)

Group 4 21.463 150.242 9 63 < 2.2e-16 ***

Sex 1 0.486 3.242 9 60 0.002866 **

Group:Sex 3 0.412 2.839 9 62 0.007281 **

Residuals 68

> summary(manova(respo~Group*Sex, data=Canine),test=’P’)

Df Pillai approx F num Df den Df Pr(>F)

Group 4 2.6446 13.6581 36 252 < 2.2e-16 ***

Sex 1 0.3272 3.2417 9 60 0.002866 **

Group:Sex 3 0.5054 1.3958 27 186 0.103601

Residuals 68

> summary(manova(respo~Group*Sex, data=Canine),test=’W’)

Df Wilks approx F num Df den Df Pr(>F)

Group 4.00 0.0014 30.2015 36.00 226.59 < 2.2e-16 ***

Sex 1.00 0.6728 3.2417 9.00 60.00 0.002866 **

Group:Sex 3.00 0.5637 1.4125 27.00 175.87 0.096985 .

Residuals 68.00
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And for two-level one-way layout all coincide

... and reduce to two-sample Hotelling T2.

> summary(manova(respo~Sex,

+ data=Canine,subset=Sex!="Unknown"),test=’H’)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

Sex 1 0.14886 0.94279 9 57 0.4961

Residuals 65

> summary(manova(respo~Sex,

+ data=Canine,subset=Sex!="Unknown"),test=’R’)

Df Roy approx F num Df den Df Pr(>F)

Sex 1 0.14886 0.94279 9 57 0.4961

Residuals 65

> summary(manova(respo~Sex,

+ data=Canine,subset=Sex!="Unknown"),test=’P’)

Df Pillai approx F num Df den Df Pr(>F)

Sex 1 0.12957 0.94279 9 57 0.4961

Residuals 65

> summary(manova(respo~Sex,

+ data=Canine,subset=Sex!="Unknown"),test=’W’)

Df Wilks approx F num Df den Df Pr(>F)

Sex 1 0.87043 0.94279 9 57 0.4961

Residuals 65

292



Still Extending Classics:
Two-Sample Hotelling’s T2

(Now As a Special Case of MANOVA)
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And now: two-sample, first again univariate

Two-sample t-test: if

y1i, i = 1, . . . ,n1 are modeled iid with N(µ1,σ2
1), and

y2i, i = 1, . . . ,n2 are modeled iid with N(µ2,σ2
2), and

it is believed that those random variables are all independent

(between, but also within groups - “samples” - as well)

and it is also believed that σ2
1 = σ2

2

then
x̄1 − x̄2

spooled

√
n1n2

n1 +n2 − 2
is modeled by tn1+n2−2,

or equivalently,

(
n1n2

n1 +n2 − 2

)
(x̄1 − x̄2)

2

s2
pooled

by F1,n1+n2−2.

The important component here is the “pooled” estimate of the
common variance

s2
pooled =

1

n1 +n2 − 2

(
n1∑
i=1

(x1i− x̄1)
2 +

n2∑
i=1

(x2i− x̄2)
2

)
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Two-sample: multivariate

Hotelling T2: if

y1i, i = 1, . . . ,n1 are modeled iid with N(µ1,Σ1), and

y2i, i = 1, . . . ,n2 are modeled iid with N(µ2,Σ2), and

those random vectors are believed to be are independent

(between and within groups)

(but not necessarily within vectors)

and Σ1 = Σ2, then (writing µ = µ1 −µ2)

n1 +n2 − 1 − p

(n1 +n2 − 2)p

n1n2

n1 +n2
(ȳ1 − ȳ2 −µ)TS−1

pooled(ȳ1 − ȳ2 −µ)

can be considered Fp,n1+n2−1−p or also

T2 =
n1n2

n1 +n2
(ȳ1 − ȳ2 −µ)TS−1

pooled(ȳ1 − ȳ2 −µ)

can be considered
(n1 +n2 − 2)p

n1 +n2 − 1 − p
Fp,n1+n2−1−p
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The pooled estimate of Σ

The estimate of the common variance-covariance matrix is
analogously the p × p matrix Spooled whose element in k-th row
and `-th column is

1

n1 +n2 − 2

(
n1∑
i=1

(y1ik− ȳ1k)(y1i`− ȳ1`) +

n2∑
i=1

(y2ik− ȳ2k)(y2i`− ȳ2`)

)
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Applications akin to univariate ones

Two-sample comparisons

testing H0 : µ1 = µ2.

Two-sample confidence intervals

for µ = µ1 −µ2
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Truly multivariate application: profile analysis

Profile analysis is again more general:

we test H0 : Cµ1 = Cµ2, where C is k× p

using T2 =
n1n2

n1 +n2
(ȳ1 − ȳ2)

TCT[CSpooledCT]−1C(ȳ1 − ȳ2)

with the distribution
(n1 +n2 − 2)k

n1 +n2 − 1 − k
Fk,n1+n2−1−k
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Example

V1, V2 and V3, V4 are the same measurements made in two labs.

> eff

V1 V2 V3 V4

1 6 27 25 15

2 6 23 28 13

3 18 64 36 22

4 8 44 35 29

5 11 30 15 31

6 34 75 44 64

7 28 26 42 30

8 71 124 54 64

9 43 54 34 56

10 33 30 29 20

11 20 14 39 21
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Paired T2

Let’s try the paired Hotelling first:

> summary(manova(cbind(V1-V3,V2-V4)~1,data=eff),

+ intercept=T,test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

(Intercept) 1 1.3639 6.1377 2 9 0.02083 *

Residuals 10

> 1-pf(13.6*9/20,2,9)

[1] 0.02098437
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And two-sample T2

And then the two-sample Hotelling:

> respon=cbind(c(eff$V1,eff$V3),c(eff$V2,eff$V4))

> sam=factor(rep(c(0,1),c(11,11)))

> sam

[1] 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Levels: 0 1

> summary(manova(respon~samp),test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

sam 1 0.6332 6.0158 2 19 0.009463 **

Residuals 20
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Review of t-tests: one-sample

Notation: ȳ =
1

n

∑
i

yi, s2 =
1

n− 1

∑
i

(yi− ȳ)
2

the t statistic
√
n
ȳ−µ

s
is tn−1 (abusing the notation)

if y1,y2, . . . ,yn are iid, each is N(µ,σ2); then it follows that

• ȳ is N(µ,
1

n
σ2), and then

ȳ−µ
σ√
n

=
√
n
ȳ−µ

σ
is N(0, 1)

• (n− 1)s2

σ2
=

∑
i(xi− x̄)

2

σ2
is χ2

n−1

• x̄ and s2, and thus
√
n
x̄−µ

σ
and

(n− 1)s2

σ2
are independent

which together yields the tn−1 distribution of

√
n
x̄−µ

σ√
(n−1)s2

σ2

n− 1

=
√
n
x̄−µ

s

For large n, this distribution is approximately N(0, 1)
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Two sample (t) test: univariate

If y1i, i = 1, . . . ,n1 are iid with N(µ1,σ2
1),

and y2i, i = 1, . . . ,n2 are iid with N(µ2,σ2
2),

and they are independent also between samples, and σ2
1 = σ2

2,

then
ȳ1 − ȳ2

s̄

√
n1n2

n1 +n2 − 2
is tn1+n2−2 (s̄ is “pooled” estimate)

or, alternatively,

(
n1n2

n1 +n2 − 2

)
(ȳ1 − ȳ2)

2

s̄2
is F1,n1+n2−2.
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Two sample (T2) test: multivariate

If y1i, i = 1, . . . ,n1 are iid with N(µ1,Σ1),

and y2i, i = 1, . . . ,n2 are iid with N(µ2,Σ2),

and they are independent also between samples,

and Σ1 = Σ2,

then (µ = µ1 −µ2)

n1 +n2 − 1 − p

(n1 +n2 − 2)p

n1n2

n1 +n2
(ȳ1 − ȳ2 −µ)TS−1

pooled(ȳ1 − ȳ2 −µ)

is Fp,n1+n2−1−p, or, alternatively,

T2 =
n1n2

n1 +n2
(ȳ1 − ȳ2 −µ)TS−1

pooled(ȳ1 − ȳ2 −µ)

is
(n1 +n2 − 2)p

n1 +n2 − 1 − p
Fp,n1+n2−1−p

where Spooled is the pooled sample variance-covariance matrix with
elements

1

n1 +n2 − 2

(
n1∑
i=1

(y1ik− ȳ1k)(y1i`− ȳ1`) +

n2∑
i=1

(y2ik− ȳ2k)(y2i`− ȳ2`)

)
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Dual View - Reconciling Distances:
Multidimensional Scaling (Ordination)
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The principle

Imagine that you have a map, with the distances of cities

and then you lose it, and what remains are distances

and you have to reconstruct the map
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Fairmont hotels in Alberta

Caution: only to illustrate methodology - otherwise not quite an
example of a real data analysis. Driving distances:

> Fairorg ## original data out of travel claims

Banff Calgary Edmonton Jasper LakeLouise

Banff 0 128 NA NA 58

Calgary 128 0 294 NA NA

Edmonton NA 294 0 370 NA

Jasper NA NA 370 0 229

LakeLouise 58 NA NA 229 0

> Fairmont ## completed by "minimal sum"

Banff Calgary Edmonton Jasper LakeLouise

Banff 0 128 422 287 58

Calgary 128 0 294 415 186

Edmonton 422 294 0 370 480

Jasper 287 415 370 0 229

LakeLouise 58 186 480 229 0

> plot(cmdscale(Fairmont),

+ pch=16,xlab=’’,ylab=’’,xlimrrank=c(-250,350),ylim=c(-250,200))

> text(cmdscale(Fairmont)-15,lab=row.names(Fairmont))
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Banff
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Edmonton
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Calgary

310



Lake Louise
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Jasper
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And now something different: Skoki lodge
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Even the king goes there by foot

314



Is this Alberta?
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This is Alberta
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And now?

-200 -100 0 100 200

-1
00

0
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0

20
0

Banff
Calgary

Edmonton
Jasper

LakeLouise

rbind(c(cos(pi*0.21),sin(pi*0.21)),c(sin(pi*0.21),-cos(pi*0.21)))
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OK, let’s try something closer...

Dojezdová vzdálenost (kilometr)   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Brno 1 296 77 307 216 168 296 146 96 169 337 93 208 176 240

Plzeň 2 296 369 200 137 208 181 213 388 462 81 217 92 469 100

Olomouc 3 77 370 236 290 139 370 135 63 98 411 167 282 104 314

Liberec 4 309 198 237 249 98 96 155 401 434 233 230 110 449 135

České Budějovice 5 217 137 290 250 253 239 258 309 383 218 138 151 389 183

Hradec Králové 6 167 209 140 97 253 190 24 206 238 240 112 116 245 143

Ústí nad Labem 7 298 181 371 96 238 190 196 390 463 122 219 93 470 87

Pardubice 8 146 214 135 154 193 24 196 201 234 246 90 121 240 149

Zlín 9 96 389 62 400 308 206 389 202 124 430 186 300 131 333

Ostrava 10 170 463 94 440 383 239 463 235 125 504 261 375 14 407

Karlovy Vary 11 337 82 410 234 218 241 121 246 429 502 258 127 509 105

Jihlava 12 93 218 167 229 138 113 218 90 186 259 259 130 266 162

Praha 13 209 91 282 109 150 116 92 121 301 375 128 130 382 31

Paskov 14 176 469 100 451 388 244 469 240 131 13 510 266 380 412

Kladno 15 240 99 313 135 181 143 86 148 332 406 105 161 31 412

Mílový graf mezi městy Česko: https://www.dobracesta.com/tabulka-vzdalenosti-mezi-mesty/cz/
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But rather better example first: Crimes

After interviewing respondents, we have the following table of
dissimilarities between various crimes

0

2 0

15 13 0

15 14 6 0

15 14 3 3 0

6 4 3 10 12 0

4 2 14 14 15 13 0

15 6 5 11 10 6 10 0

15 10 12 2 2 12 14 7 0

2 2 15 15 15 14 4 11 15 0

14 12 2 11 11 6 15 11 12 14 0

14 15 8 4 3 12 14 11 3 15 11 0

9 13 6 14 9 5 10 11 7 13 7 11 0

"Murder" "Manslaugh" "Burglary" "Drugs" "Shoplift" "Drunkdrive" "Arson"

"Bodyharm" "Drunkdisord" "Rape" "Cartheft" "Trespass" "Taxes"
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The story of multidimensional scaling

Can we summarize these data somehow?

Say, plot them as points on the plane?

Multidimensional scaling: we would like to represent data in
a lower (often 2-) dimensional (hyper)plane while preserving the
dissimilarities (distances) between the data points as much as
possible (minimizing the possible distortion caused by the reduction
of dimensionality).

Alternative name: ordination
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Two principal attitudes

Classical - also called metric multidimensional scaling:

- works rather with Euclidean distances than anything else

- considers pictorial projections into the lower dimensional
hyperplanes rather than general (possibly nonlinear) mappings

Nonlinear - also called non-metric multidimensional scaling

- works with general, even often non-metric distances

- considers all, posiibly also non-linear mappings into the lower
dimensional hyperplanes; finds them via numerical algorithm
optimizing certain criterion of optimality
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General dissimilarities ≈ (more or less) distances

The prefix “dis-” means that similar objects would have low
dissimilarity and objects not similar high - if it were other way
round the name would rather be “similarity”

What constitutes a “distance”? Some desirable properties:

D1. nonnegativity : from A to B it is > 0

D2. symmetry : from A to B = from B to A

D3. identification: from A to A it should be 0

These are usually the minimal properties which we require for
“distance” or dissimilarity. A similarity has scale reversed: it
satisfies 1. and 2. but instead of 3. it is required that

S. similarity of A and B is always 6 than similarity of A and A
- and thus also 6 than similarity of B and B
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More stringent properties

Possible more stringent properties of dissimilarities are

D4. triangle inequality

from A to C 6 from A to B + from B to C

A dissimilarity satisfying D1-D4 is called a pseudometric. A
pseudometric is a metric, if it also satisfies

D5. if from A to B is 0, then A = B

If a dissimilarity satisfies D5 and

D6. from A to C 6 max {from A to B, from B to C}

(note that the latter implies triangle inequality, hence D5 and D6
imply a metric), it is called an ultrametric. We will see an example
in hierarchical clustering, where it arises as a distance on a tree.
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Aspects of dissimilarities

Sometimes we may like dissimilarities ranging from 0 to 1,
sometimes from 0 to +∞; sometimes we need to convert a
similarity measure to a dissimilarity; useful transformations are
1 −d, 1/d, 1/(1 +d)

Another way to transform a similarity cij into a dissimilarity is to
consider the dissimilarity

dij = (cii− 2cij+ cjj)1/2

If we are calculating distances from the datapoints, we may want
them standardized: all variables mean zero, standard deviation one.

Dissimilarities may be computed from variables, or given explicitly;
they can be conveniently organized into a matrix - a symmetric
one if the dissimilarities are so.

In R, it is a function: dist()

Also, in the widely used R package cluster it is daisy()
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Examples: metrics

Euclidean metric:

d2(A,B) =
√

(A1 −B1)2 + · · ·+ (Ap−Bp)2

Manhattan (“Edmonton”, cityblock) metric

d1(A,B) = |A1 −B1|+ · · ·+ |Ap−Bp|

Maximum metric

d∞(A,B) = max{|A1 −B1|, . . . , |Ap−Bp|}

These are all special cases (limit for p = ∞) of the Minkowski
distance

dp(A,B) = (|A1 −B1|
p+ · · ·+ |Ap−Bp|

p)1/p
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Some dissimilarities aimed at other data types

For binary data, dissimilarities may be based on various association
coefficients known from contingency tables, like Yule’s (ad −
bc)/(ad+ bc).

If we interpret contingency table as presence-absence matching,
then we have things like a+d/(a+b+c+d) (ordinary matching),
a/
√

(a+ b)(a+ c) (Ochiai index), or 2a/(2a + b + c) (Dice-
Sorensen index), or a/(a+ b+ c) (Jaccard index).

For ordinal data (rankings), dissimilarities may be based on ranks

Canberra metric
n

n∗

∑
i

|xi− yi|

|xi|+ |yi|

is aimed at counts, that is, nonnegative xi and yi

hence sometimes also |xi+ yi| or xi+ yi in the denominator

the sum is over the n∗ terms that are not of the form 0/0

(if all have this form, then undefined)
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Examples of dissimilarities aimed at 0-1 data

Hamming metric - handy for nominal (categorical) data:

1− proportion of i such that xi = yi

proportion means: the number of the i’s for which it is true

divided by the total number of the i’s

equivalent: proportion of i such that xi 6= yi

R function dist() has a distance “binary” defined also as

proportion of i such that xi 6= yi
but the proportion is only among those that are not both 0
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Penrose’s measure

There are measures of distances between groups (populations
and samples), when the information is available only on means,
standard deviations, and covariances.

Penrose’s measure: suppose there are p variables and several
groups: the mean of k-th variable in i-th group is µki. If we
know that all groups have variance vk of k-th variable, then

Pij =

p∑
k=1

(µki−µkj)
2

pvk

Does not include covariances: may overemphasize correlated
variables.
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Mahalanobis distance

Euclidean distance after normalizing the data

If we know (or estimate) the variance-covariance matrix Σ, we form
its inverse Σ−1, whose elements are σrs. Then

Dij =

p∑
r=1

p∑
s=1

(µri−µrj)σ
rs(µsi−µsj) = (µi−µj)

TΣ−1(µi−µj)

where µi is the column vector with components µki.
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Distances based on proportions

If pk, qk are proportions of the k-th attribute in the first and
second group respectively, then we may take

d =
∑
k

1
2|pk−qk| or d = 1 −

∑
k

pkqk(∑
k

p2
k

∑
k

q2
k

)1/2

(we typically want them to range from 0 to 1)
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Classical (metric) multidimensional scaling:
Euclidean distances

Classical (also called metric) multidimensional scaling is derived
under the assumption that the distances are Euclidean - that is,
they arose as the Euclidean distances among points in some high-
dimensional space.

The crucial property that distinguishes the Euclidean metric
from others is its relationship to the inner product. If the
dissimilarities dij between n objects are Euclidean, then there is a
collection of points, vectors yi ∈ Rp for some p (not greater than
n− 1) such that

d2
ij = (yi− yj)T(yi− yj) = yT

i yi+ yT
j yj− 2yT

i yj = ‖yi‖2 + ‖yj‖2 − 2yT
i yj

We do not need yij themselves - but we need to know the inner
products yT

i yj, and the question is how to recover those from given
distances dij
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Recovering the inner product

Given the dij’s, let A be the matrix with the elements −
1

2
d2
ij

If the dissimilarities are Euclidean, this matrix must be symmetric,
have diagonal elements zero, and off-diagonal elements nonzero.
As the Euclidean distances are invariant with respect to translations
and rotations, we can choose without loss of generality the

coordinate system so that 0 = ȳ, that is, 0 =

n∑
i=1

yi

Now, given the matrix A, we construct the matrix B consisting of
elements

bij = −
1

2
d2
ij+

1

2n

∑
i

d2
ij+

1

2n

∑
j

d2
ij−

1

2n2

∑
i,j

d2
ij

(for each element aij of A, we subtract the average of its row, the
average of its column, and add the average of the whole A)

This matrix is always symmetric if the dissimilarities are symmetric;
if they are also Euclidean, the elements of B are equal to yT

i yj
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Inner product recovered

Thus, B “reconstructs” the inner products of the yi’s - without
necessarily knowing them, only their distances

In particular, if yT
i are lines of a matrix Y, then B = YYT

Conversely, if B is a symmetric and nonnegative definite n × n
matrix, then it defines an inner product among some collection
of yi, i = 1, 2, . . . ,n

- which in turn yields squared distances among the objects
corresponding to some yi, as given above

333



The proof

For all i and j we have

d2
ij = d

2
ji = (yi− yj)T(yi− yj) = ‖yi‖2 + ‖yj‖2 − 2yT

i yj

Using the fact that
∑
i yi = 0, we obtain

1

n

∑
i

d2
ij =

1

n

∑
i

‖yi‖2 + ‖yj‖2 and
1

n

∑
j

d2
ij = ‖yi‖2 +

1

n

∑
j

‖yj‖2

and also
1

n2

∑
i,j

d2
ij =

1

n

∑
j

1

n

∑
i

d2
ij =

1

n

∑
i

‖yi‖2 +
1

n

∑
j

‖yj‖2

which yields then

d2
ij−

1

n

∑
i

d2
ij−

1

n

∑
j

d2
ij+

1

n2

∑
i,j

d2
ij = −2yT

i yj

and subsequently the result. For the converse, just note that

B = ULUT = UL1/2L1/2UT

yielding the desired Y = UL1/2

Note that B = HAH, where H =

(
I−

1

n
11T

)
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Low-rank approximation of the inner products

Next step starts with the matrix B: let ULUT be the eigenvalue
decomposition of B

If the distances are Euclidean, then B is nonnegative definite,
its eigenvalues are all nonnegative, and one can construct its
approximation of rank k, a symmetric nonnegative definite matrix
Bk = ULkUT, where Lk is constructed from L by retaining only k
largest eigenvalues (and changing the rest of the diagonal to zero)

The eigenvalue decomposition ULkUT of Bk then gives the
coordinates of the new objects in the desired k-dimensional
representation: Yk = UL

1/2
k
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Dirty tricks

All the above goes under the assumption that the dissimilarities
are Euclidean; however, classical (metric) multidimensional scaling
is often applied to arbitrary distance matrices, with no guarantee
that they satisfy this assumption

The practical approach works under the tenet that the Euclidean
assumptiom is satisfied “at least approximately”: that the
dissimilarities arise, possibly with some error, as the Euclidean
distances among some points in some Euclidean space

Out of these dissimilarities, the matrices A and B are constructed
as above; this matrices are still symmetric, as long as the
dissimilarities are symmetric - but may not be nonnegative definite:
some eigenvalues may be negative

A possibility then is to increase all eigenvalues by a constant making
them nonnegative; another possibility is to use only the k largest
eigenvalues, if they are positive
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Duality to principal components

If the dissimilarities dij arise as the Euclidean distances between
the lines of a matrix Y - which can be, due to the translation and
rotation invariance of the distances, considered without loss of
generality with centered columns, that is, the columnwise sums of
Y are all zero - then the k-dimensional transformation amounts to
obtaining the first k principal components of Y (obtained without
scaling to the correlation matrix)

The classical multidimensional scaling can be thus seen as
equivalent (or also dual) to obtaining first k (most often k = 2, in
which this amounts to plotting) principal components
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Classical multidimensional scaling
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> plot(cmdscale(Crime),xlim=c(-10,9),ylim=c(-8,6))

> text(t(t(cmdscale(Crime))+c(0,0.3)),labels=labels(Crime),cex=1.1)
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How distorted?

Comp.1 Comp.3 Comp.5 Comp.7

crimpc
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0.6725267 % of variance explained by the first two components
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Best representation of dissimilarities?

At the beginning, we stipulated that multidimensional scaling aims
at “representing data in a low (usually 2-) dimensional (hyper)plane
while preserving the dissimilarities (distances) between the data
points as much as possible (minimizing the possible distortion
caused by the reduction of dimensionality)”.

Really? In fact, the just described procedure amounts to the best
low-rank approximation, in the Euclidean metric, of the matrix
B (with elements bij) representing (“reconstructing”) the original
inner products: the new objects ŷi, those in the lower-dimensional
representation, thus minimize∑

i,j

(bij− ŷT
i ŷj)

2

among all possible representations
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Stress (or also STRESS)

How about the distances themselves? For instance, is it true that
the result of classical multidimensional scaling minimizes something
like ∑

i,j

(
dij− d̂ij

)2

or a similar quantity?

Such a quantity is in this context called stress

(or also STRESS as an acronym, according to Kruskal:
STandardized Residual Sum of Squares)

The particular stress formula is called Kruskal-Shepard stress
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The partial result for the classical scaling

If the distances are Euclidean, then the new distances, the
distances between the new objects constructed by the algorithm of
classical multidimensional scaling, are the ones minimizing, among
all linear transformations of the original objects,∑

i,j

(d2
ij− d̂

2
ij) =

∑
i 6=j

(d2
ij− d̂

2
ij)

or equivalently∑
i,j(d

2
ij− d̂

2
ij)∑

i,jd
2
ij

=

∑
i 6=j(d

2
ij− d̂

2
ij)∑

i 6=jd
2
ij

where dij are the original and d̂ij the new, transformed distances

The quantities above can be considered as a measure of distortion
- stress

Non-metric (and, as a rule, nonlinear) versions of multidimensional
scaling optimize (numerically) different stresses
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Sammon mapping

Non-metric (nonlinear) versions of multidimensional scaling
construct the k-dimensional configuration via numerical minimization
of a suitable stress function - among all possible configurations, not
just those obtained as linear projections

The minimized stress in the multidimensional scaling method called
Sammon mapping is (note that no off-diagonal zero elements
allowed)

1∑
i 6=jdij

∑
i 6=j

(dij− d̂ij)
2

dij

The Sammon mapping stress gives more weight, more attention to
small distances - rather than to large ones (based on the empirical
finding that the large distances tend to be less precise than the
small ones)
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Kruskal non-metric multidimensional scaling

The stress of the Kruskal nonmetric multidimensional scaling
(iso-MDS): is a modification of the Kruskal-Shepard stress∑

i 6=j

(ϑ(dij) − d̂ij)
2∑

i,jd
2
ij

allowing also for an arbitrary increasing transformation ϑ - which
means that the result does not depend that much on the original
distances dij but rather on their ranks (the ordinal numbers in their
ordering); the idea is to choose a new configuration so that the
ordering of the distances is as much preserved as possible

The algorithm minimizes over all possible d̂ij as well as ϑ.

344



Sammon
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> library(MASS)

> plot(sammon(Crime)$points,xlim=c(-10,9),ylim=c(-8,6))

> text(t(t(sammon(Crime)$points)+c(0,0.3)),labels=labels(Crime),cex=1.1)
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Kruskal nonmetric
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> library(MASS)

> plot(isoMDS(Crime)$points,xlim=c(-12,9),ylim=c(-8,6))

> text(t(t(isoMDS(Crime)$points)+c(0,0.3)),labels=labels(Crime),cex=1.1)
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And Czech cities? Not a big deal (Nic moc)
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Better data?

More thorough examination shows that the distance matrix is not
symmetric... (???)

> Czechia=(Czechiaorg+t(Czechiaorg))/2

> Czech.cl=cmdscale(Czechia)

> plot(Czech.cl,type="n",xlab="",ylab="")

> text(Czech.cl,labels=rownames(Czech.cl))

Brno Plzen Olomouc Liberec Budejovice Hradec Usti Pardubice Zlin Ostrava Vary Jihlava Praha Kladno

Brno 0.0 296.0 77.0 308.0 216.5 167.5 297.0 146.0 96.0 169.5 337.0 93.0 208.5 240.0

Plzen 296.0 0.0 369.5 199.0 137.0 208.5 181.0 213.5 388.5 462.5 81.5 217.5 91.5 99.5

Olomouc 77.0 369.5 0.0 236.5 290.0 139.5 370.5 135.0 62.5 96.0 410.5 167.0 282.0 313.5

Liberec 308.0 199.0 236.5 0.0 249.5 97.5 96.0 154.5 400.5 437.0 233.5 229.5 109.5 135.0

Budejovice 216.5 137.0 290.0 249.5 0.0 253.0 238.5 225.5 308.5 383.0 218.0 138.0 150.5 182.0

Hradec 167.5 208.5 139.5 97.5 253.0 0.0 190.0 24.0 206.0 238.5 240.5 112.5 116.0 143.0

Usti 297.0 181.0 370.5 96.0 238.5 190.0 0.0 196.0 389.5 463.0 121.5 218.5 92.5 86.5

Pardubice 146.0 213.5 135.0 154.5 225.5 24.0 196.0 0.0 201.5 234.5 246.0 90.0 121.0 148.5

Zlin 96.0 388.5 62.5 400.5 308.5 206.0 389.5 201.5 0.0 124.5 429.5 186.0 300.5 332.5

Ostrava 169.5 462.5 96.0 437.0 383.0 238.5 463.0 234.5 124.5 0.0 503.0 260.0 375.0 406.5

Vary 337.0 81.5 410.5 233.5 218.0 240.5 121.5 246.0 429.5 503.0 0.0 258.5 127.5 105.0

Jihlava 93.0 217.5 167.0 229.5 138.0 112.5 218.5 90.0 186.0 260.0 258.5 0.0 130.0 161.5

Praha 208.5 91.5 282.0 109.5 150.5 116.0 92.5 121.0 300.5 375.0 127.5 130.0 0.0 31.0

Kladno 240.0 99.5 313.5 135.0 182.0 143.0 86.5 148.5 332.5 406.5 105.0 161.5 31.0 0.0
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Not a big deal either
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Hm...

That Ostrava is maybe really far away from everything...

Brno Plzen Olomouc Liberec Budejovice

2652.0 2945.5 2949.5 2886.0 2990.0

Hradec Usti Pardubice Zlin Ostrava

2136.5 2940.5 2136.0 3426.0 4153.0

Vary Jihlava Praha Kladno

3312.0 2262.0 2135.5 2384.5

So how about...

> Czech.sam=sammon(Czechia)

Initial stress : 0.01890

stress after 10 iters: 0.00528, magic = 0.500

stress after 20 iters: 0.00525, magic = 0.500

> plot(Czech.sam$points,type="n",xlab="",ylab="")

> text(Czech.sam$points,labels=rownames(Czech.sam$points))
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Bingo? Perhaps after a bit of rotation...
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...but not with Kruskal
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Graves with pottery

In an archaelogical study there are six graves containing five types
of pottery between them

> Graves

1 2 3 4 5

A 0 0 1 1 0

B 1 1 0 0 1

C 0 1 1 1 1

D 0 0 1 1 0

E 1 0 0 0 1

F 1 0 1 1 1

It is desired to order the graves chronologically based on the
similarity/dissimilarity of the pottery found in them.

We are going to look at the dissimilarities of the rows, xi, of the
matrix shown above; note that the distance of lines A and D will
be inevitably 0 in any reasonable case
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Relevant dissimilarities

The Hamming distance is in this case equal to the d1(xj,xj)/5, the
`1 (“Manhattan”) distance divided by p = 5; the following shows
the result for the `1 distance

> dist(Graves,method="manhattan",diag=TRUE)

A B C D E F

A 0

B 5 0

C 2 3 0

D 0 5 2 0

E 4 1 4 4 0

F 2 3 2 2 2 0
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Transforming similarities to dissimilarities

The book of Mardia, Kent, and Bibby champions using an ordinary
matching coefficient c(xi,xj), which counts the number of cases
when both vectors are either equal to 0 or to 1, and divides them
by p = 5: the result is

c(xi,xj) = 1 −d1(xi,xj)/5.

In terms of the book of Mardia, Kent, and Bibby, c(xi,xj) is a
“similarity” which they convert into an euclidean dissimilarity by
the transformation

d(xi,xj) = (c(xi,xi) − 2c(xi,xj) + c(xj,xj))
1/2

which in the present case yields

d(xi,xj) = (2 − 2c(xi,xj))
1/2 =

√
2d1(xi,xj)/5

> graveu <- sqrt(2*dist(Graves,method="manhattan",diag=TRUE)/5)

> eigen((diag(6)-1/6) %*% as.matrix(-graveu^2/2) %*% (diag(6)-1/6))

eigen() decomposition

$values

[1] 1.747708e+00 5.864466e-01 3.518536e-01

[3] 4.732485e-02 0.000000e+00 -9.685690e-17

...
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Seriation: scaling into dimension one

We perform now classical multidimensional scaling into dimension
k = 1, to obtain a possible time order of the graves

> gramds <- cmdscale(graveu,k=1)

> gramds

[,1]

A 0.600019876

B -0.765783233

C 0.194649330

D 0.600019876

E -0.635067161

F 0.006161312

This suggests an order (A and D), C, F, E, B - or the reverse one;
note that time orientation cannot be determined from the method
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Seriation without euclidization
Of course, we could apply the algorithm directly to the `1 distance
- as we are scaling into dimension one, we need just the maximal
eigenvalue to be positive

> cmdscale(dist(Graves,method="manhattan",diag=TRUE)/5,k=1)

[,1]

A 0.414792257

B -0.566671301

C 0.136621560

D 0.414792257

E -0.408900852

F 0.009366079

> cmdscale(dist(Graves,method="manhattan",diag=TRUE),k=1)

[,1]

A 2.0739613

B -2.8333565

C 0.6831078

D 2.0739613

E -2.0445043

F 0.0468304

The resulting orders are the same: (A and D), C, F, E, B
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Something else

Finally, note that the application of the nonlinear metholds is
hampered by the fact that lines A and D have zero distance.
Nonetheless, after omitting the line A, we obtain

> sammon(dist(Graves[-1,],method="manhattan",diag=TRUE)/5,k=1)

...

[,1]

B 0.49885561

C -0.27272060

D -0.53060611

E 0.34010348

F -0.03563238

which yields the same order: D (and A), C, F, E, B
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Something else

Only the Kruskal method yields somewhat different result - but
note that the scores are very close there, suggesting that while the
groups (A, D, C, F) and (B, E) may be really apart, the ordering
within the groups may be a bit quastionable

> isoMDS(dist(Graves[-1,],method="manhattan",diag=TRUE)/5,k=1)

...

[,1]

B 0.5048145

C -0.3365613

D -0.3365814

E 0.5048155

F -0.3364872

...
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Multidimensional scaling: stochastic
underpinning?

James O. Ramsay: Some Statistical Approaches to Multidimensional
Scaling

Journal of the Royal Statistical Society. Series A (General), Vol.
145, No. 3 (1982), pp. 285-312

(with discussion)
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Finding Groups in Data: Cluster Analysis
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Two main approaches

Cluster analysis finds groups in the data - groups are formed by
those items (datapoints) that have small distances (dissimilarities)

Dissimilarities - we have seen many of them, some are metrics
(dij 6 dik+dkj), some are more general; hierarchical clustering (in
fact) involves ultrametrics (dij 6 max{dik,dkj} - tree distance, see
below).

The objective is to divide items into k groups so that the members
of the same group are more alike than members of the other group:
clusters.

The number k may be preassigned: partitioning methods

or not preassigned: hierarchical clustering.

A lot of clustering methods (a majority?) are based on distances
between the items; so cluster analysis is often viewed as a distance-
base method.

Methods: computational (rather than “statistical”).
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R

Earlier packages:

kmeans: classical k-means routine, base R

hclust: some hierarchical clustering, but also still graphical routines
in use, for instance more customizable plotting of dendrograms via
as.dendrogram(as.hclust()))

plclust: deprecated, use pltree (or plot) from the package cluster

Benchmark:

cluster, functions agnes (AGglomerative NESting, agglomerative
hierarchical clustering), clara (Clustering LARge Applications,
partitioning method), daisy (Dissimilarity matrix calculation),
diana (DIvisive ANAlysis clustering, divisive hierarchical clustering),
fanny, (Fuzzy ANalysis clustering), mona (MONothetic clustering of
binary variables, hierarchical clustering), pam (Partitioning Around
Medoids, partitioning method)

Kaufman, L. and Rousseeuw, P. J. (1990): Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley, New York.
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Partitioning methods: k-means

The number of clusters, k, is given in advance. The clusters
themselves are determined by minimizing a criterion.

k-means: minimize the sum of squared distances, within clusters,
from the centers of clusters - which are subject to minimization
too

The minimized criterion is the minimum

over the selection of clusters and over the selection of mi’s,
k∑
i=1

∑
j∈Ci

‖xij− mi‖2

which is equal to the minimum over the selection of clusters, of
k∑
i=1

∑
j∈Ci

‖xij− x̄i‖2

where xi is the mean of i-th cluster Ci.

We are looking for that partition to clusters C1,C2, . . . ,Ck that
makes these sums minimal
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Partitioning methods: k-medoids

The number of clusters, k, is given in advance. The cluster
themselves are determined by minimizing a criterion.

k-medoids: the sum of distances, within clusters, from the centers
of clusters - which are subject of minimization too; here it is also
required that the center of the group is a data point itself (then
general dissimilarities may be used)

The minimized criterion is the minimum, over the selection of
clusters and over the selection of mi’s,

k∑
i=1

∑
j∈Ci

‖xij− mi‖

In analogy to k-means, we could take mi’s to be the spatial medians
of the i-th cluster - we only have the additional requirement that
they should be one of the datapoints, which makes computation
easier
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Let us try it

> kmea1=kmeans(trackmen,3)

> kmea1

...

Clustering vector:

argentin australi austria belgium bermuda brazil burma canada

3 1 3 1 3 1 3 1

chile china columbia cookis costa czech denmark domrep

1 1 1 2 3 1 1 2

finland france gdr frg gbni greece guatemal hungary

1 1 1 1 1 1 3 1

india indonesi ireland israel italy japan kenya korea

1 2 1 3 1 1 1 3

dprkorea luxembou malaysia mauritiu mexico netherla nz norway

1 3 2 2 1 1 1 1

png philippi poland portugal rumania singapor spain sweden

2 3 1 1 1 2 1 1

switzerl taipei thailand turkey usa ussr wsamoa

1 3 2 1 1 1 2

...

Is it not just clustering along the marathon records?
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We could check it out

> kmea2=kmeans(trackmen[,8],3)

> kmea2

...

Clustering vector:

[1] 1 3 1 3 1 3 1 3 3 3 3 2 1 3 3 2 3 3 3 3 3 3 1 3 3 2 3 1

[29] 3 3 3 1 3 1 2 2 3 3 3 3 2 1 3 3 3 2 3 3 3 1 2 3 3 3 2

...

> as.vector(kmea1$cluster)

[1] 3 1 3 1 3 1 3 1 1 1 1 2 3 1 1 2 1 1 1 1 1 1 3 1 1 2 1 3

[29] 1 1 1 3 1 3 2 2 1 1 1 1 2 3 1 1 1 2 1 1 1 3 2 1 1 1 2

Are they not the same? Indeed

> c(3,2,1)[kmea2$cluster]-as.vector(kmea1$cluster)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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So, scaling once again

> kmea3=kmeans(scale(trackmen),3)

> kmea3

...

Clustering vector:

argentin australi austria belgium bermuda brazil burma

1 1 1 1 2 1 2

canada chile china columbia cookis costa czech

1 1 1 1 3 2 1

denmark domrep finland france gdr frg gbni

1 2 1 1 1 1 1

greece guatemal hungary india indonesi ireland israel

1 2 1 1 2 1 1

italy japan kenya korea dprkorea luxembou malaysia

1 1 1 1 2 1 2

mauritiu mexico netherla nz norway png philippi

2 1 1 1 1 2 2

poland portugal rumania singapor spain sweden switzerl

1 1 1 2 1 1 1

taipei thailand turkey usa ussr wsamoa

2 2 1 1 1 3
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A cautious picture

-2 0 2 4 6 8 10

-2
-1

0
1

PC1

P
C
2

plot(predict(prcomp(trackmen,scale=T)),pch=3*kmea3$cluster)
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4-means?
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Crimes: 3-medoids

> library(cluster)

> clusplot(pam(Crime,3),labels=2,sub=’’)
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Crimes: k-medoids with different k
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k-means give Cartheft to the other when k = 2;
k = 4: Bodyharm extra
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Crimes: 3-means

> clusplot(Crime,kmeans(Crime,3)$cluster,diss=T,labels=2)
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Crimes: k-means with different k
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k = 2: different from 2-medoids

k = 4: Drunkdisord is extra
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Hierarchical clustering

We may:

• start with clusters containing 1 item and end up with all items
in one cluster: agglomerative clustering

• or other way round: divide and divide: divisive clustering

At every step, we are trying to join some two clusters
(agglomerative) or divide some cluster (divisive). A criterion for
that may be

• single linkage: clusters are close if each contains one element
such that the two are close (take min of distances)

• complete linkage: clusters are close if each element of the first
is close to each element of the second (max of distances)

• average linkage: clusters are close if the elements are close on
average (each to each) (average of distances)
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Divisive methods

An example of divisive method is the algorithm of MacNaughton
and Smith: the item is put into a new cluster if the average
dissimilarity to the objects of that cluster is smaller than the
average dissimilarity to the members of its old cluster.

At each stage, the cluster with the largest diameter is selected.
(The diameter of a cluster is the largest dissimilarity between
any two of its observations.) To divide the selected cluster, the
algorithm first looks for its most disparate observation (i.e., which
has the largest average dissimilarity to the other observations of the
selected cluster). This observation initiates the ”splinter group”.
In subsequent steps, the algorithm reassigns observations that are
closer to the ”splinter group” than to the ”old party”. The result
is a division of the selected cluster into two new clusters.

(Implemented in function diana from the package cluster.)
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Dendrogram

The specific plot for cluster analysis: dendrogram (in principle,
can be used also for partitioning methods, we just vary k). From
the graph theory perspective, it is a tree: a connected graph with
no cycles

The dissimilarity that can be read from the dendrogram is the
tree distance (of cases and clusters): the value of this distance is
the maximum height we have to get to on the dendrogram when
traveling from one cluster or object to another connecting the two
clusters or objects, the value of the distance in the moment they
enter the common cluster. This dissimilarity is an ultrametric

For two original objects, however, their tree distance is not
necessarily equal to their original dissimilarity - this is true only
when the original dissimilarity is itself an ultrametric, and also not
true for every type of linkage. From this aspect, the dendrogram
should be viewed rather as an approximation
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A Scotch Example

21march2009

Whisky distillation using small pot stills 
over an open fi re has to be a slow process, and 
the smugglers had plenty of time. We now know 
that the copper of the still and condenser acts 
as a catalyst to convert the alcoholic vapours 
into congeners such as esters and aldehydes, 
the fruit fl avours and delicate fragrances that 
are characteristic of fi ne malt whiskies. Small 
pot stills run slowly provide longer and greater 
exposure to copper and therefore stimulate 
these reactions, resulting in a richly-fl avoured 
spirit, brimming with fl oral, fruity character. 
By comparison, the licensed distillers in the 
lowland cities operated large stills, which were 
run fast to produce spirit cheaply and in bulk, 
much like vodka today. 

Th e contrast between licensed Lowland 
and contraband Highland whiskies could not 

have been starker, which is why Scott chose 
Highland whisky for the King’s toast, and why 
Grant selected her fi nest Glenlivet whisky, with 
the “true contraband goût (fl avour)”, to send to 
Holyrood. Herein lies the distinction, which 
some assert continues to this day, between 
the fl avour styles of Highland and Lowland 
Scotch malt whiskies.

Th e famous Victorian whisky writer, 
Alfred Barnard2, distinguished between 
Highland and Lowland malt whiskies, and 
noted the conversion of some Lowland distill-
eries to the more popular Highland style. For 
example, he describes the Lowland Bankier 
distillery, built in 1829, as follows: “Th e whisky 
is now made on North Highland principles 
and, although a Lowland distillery, the qual-
ity of the spirit appears to us to be of a most 

pronounced and excellent Highland style of 
whisky”. 

Diversity of flavour

Th e rich variety of fl avours in single malt 
Scotch whisky continues to this day, and in-
deed is now more diverse due to the variable 
use of peat in drying the barley and diff erent 
types of cask for maturation. Highland and 
Island whiskies were originally of a smoky 
style, because peat was the main fuel used 
for drying the malted barley. It was, and still 
is, abundant on Highland moors and, of 
course, it was free—all you had to do was cut 
and dry it, and labour was cheap. It explains 
why a popular term for Highland whisky at 
the time was “peat reek”. Th at changed when 

Figure 1. The Illicit Highland Whisky Still, by Sir Edwin Landseer, 1829. A family engaged in illicit distillation in a bothy in the hills, high above Glenlivet. Reproduced 
by courtesy of the Victoria and Albert Museum, London
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Robert Louis Stevenson:
T he Scotsman’s Return From Abroad

At last, across the weary faem,
Frae far, outlandish pairts I came.

On ilka side o’ me I fand
Fresh tokens o’ my native land.

Wi’ whatna joy I hailed them a’ -
T he hi lltaps standin’ raw by raw,
T he public house, the Hielan’ birks,
And a’ the bonny U.P. kirks!

But maistly thee, the bluid o’ Scots,
Frae Maidenkirk to John o’ Grots,
T he king o’ drinks, as I conceive it,

Talisker, Isla, or Glenlivet!
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Dendrogram of Scotch Single Malt Whiskies

F. J. Lapointe & P. Legendre, Applied Statistics 43, 237-257 (1994)
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The Scotch revisited

(Thomas Fink, The Man’s Book, Little, Brown, and Company, New York, 2009 )
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Crimes, hierarchical: single
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Crimes, hierarchical: complete
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Crimes, hierarchical: average
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Two styles of dendrogram plots: I

> plot(as.dendrogram(as.hclust(agnes(Crime))),horiz=T,

+ xlim=c(-2,13),ylim=c(14,0),dLeaf=-2.5)
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Two styles of dendrogram plots: II

> plot(agnes(Crime),which=1,col=c(8,1))
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Silhouette plot

For the observation with index i, define the silhouette width si

First, let ai - average dissimilarity between i-th object and all other
points of the cluster to which i belongs; if i-th object is the only
one in its cluster, si = 0 without further calculations.

Then, for all other clusters C, let d(i,C) be average dissimilarity
of i-th object to all observations of C; the smallest of these d(i,C)
is bi = minCd(i,C), and can be seen as the dissimilarity between
i-the object and its “neighbor” cluster, the nearest one to which
it does not belong; and then

si =
bi−ai

max{ai,bi}

Observations with a large si (almost 1) are very well clustered, a
small si (around 0) means that the observation lies between two
clusters, and observations with a negative si are probably placed
in the wrong cluster.

Silhouette plot is primarily designed for partitioning methods, but
may be used also for the hierarchical ones - which is facilitated by
function cutree
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So

> plot(silhouette(pam(Crime,3)))

This would not work that nice:

> plot(silhouette(cutree(agnes(Crime),3),dist=Crime))

But this makes it up:

> sil <- silhouette(cutree(agnes(Crime),3),dist=Crime)

> row.names(sil) <- labels(Crime)

> plot(sil)

The silhouette plots come up as same - why?
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Silhouette for 3 medoids
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Silhouette for 3 agglomerative clusters (same)
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A possible twist of mind: clustering of variables

We can cluster variables in the same way as objects - once we can
find a measure of dissimilarity for them

And the handy ones are those based on (various versions of)
correlation coefficients

Of course, rather than ρ itself it is 1 − ρ2 that qualifies as a
dissimilarity

Or perhaps 1 − |ρ|, or 1/(1 − ρ2) − 1, or 1/(1 − |ρ|) − 1

But others may argue also for 1 − ρ, or 1/(1 − ρ) − 1/2
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Maclean’s 2004
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The data

StudentBodyAverageEnteringGrade StudentProportionWith75PercOrHigher StudentProportionWhoGraduate

Toronto 86.5 99.78 92.6

Queens 89.0 100.00 91.6

McGill 89.3 99.77 92.5

UBC 88.5 99.55 88.1

McMaster 85.0 99.98 89.2

Dalhousie 84.4 96.85 87.9

Western 88.1 99.96 91.8

Alberta 85.9 96.31 82.3

Ottawa 83.7 91.74 90.3

Sask 86.5 93.59 86.8

Sherbrooke 86.5 97.89 90.5

Montreal 87.6 99.30 91.6

Laval 86.1 97.02 79.4

Manitoba 83.1 82.31 84.8

Calgary 82.6 91.20 78.6

StudentOutOffProvince1stYear StudentInternationalGraduate StudentInternational1stYear StudentRetentionRate

Toronto 3.8 16.6 6.2 95.8

Queens 14.2 24.9 2.2 95.5

McGill 30.0 22.8 17.9 92.4

UBC 13.4 23.6 8.6 90.9

McMaster 1.7 21.0 6.8 90.1

Dalhousie 52.6 20.9 6.1 83.9

Western 4.6 14.5 4.8 94.9

Alberta 15.2 26.4 3.4 84.7

Ottawa 13.5 20.9 5.8 89.8

Sask 5.8 29.3 0.8 84.4

Sherbrooke 3.6 17.5 1.4 93.8

Montreal 7.9 20.8 12.8 90.0

Laval 2.4 20.3 11.5 95.2

Manitoba 9.1 17.4 5.1 85.1

Calgary 12.9 17.0 1.9 84.3
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StudentAwards ClassesClassSizes1stAnd2ndYearLevel Classes1stAnd2ndYearLevel1To25

Toronto 7.7 3.18 6.03

Queens 8.5 3.34 4.91

McGill 9.9 3.54 9.07

UBC 7.8 3.73 9.82

McMaster 5.8 3.19 3.23

Dalhousie 6.9 3.80 7.53

Western 4.8 4.06 16.65

Alberta 7.1 3.66 7.75

Ottawa 4.6 3.90 10.36

Sask 3.1 4.19 16.51

Sherbrooke 4.1 4.74 19.55

Montreal 6.0 4.24 14.26

Laval 5.7 4.25 20.82

Manitoba 5.2 3.79 7.40

Calgary 5.1 3.70 6.75

Classes1stAnd2ndYearLevel26To50 Classes1stAnd2ndYearLevel51To100 Classes1stAnd2ndYearLevel101To250

Toronto 9.37 19.86 35.25

Queens 9.46 24.51 38.00

McGill 13.43 25.91 32.72

UBC 15.62 22.96 42.31

McMaster 11.29 14.19 44.43

Dalhousie 19.71 29.70 33.15

Western 19.72 32.00 18.69

Alberta 15.61 26.68 34.43

Ottawa 17.08 29.24 38.90

Sask 25.10 25.58 26.80

Sherbrooke 41.59 32.10 6.76

Montreal 19.70 44.71 18.45

Laval 16.89 31.25 28.89

Manitoba 17.54 28.03 41.02

Calgary 15.22 27.96 41.48

Classes1stAnd2ndYearLevel251To500 Classes1stAnd2ndYearLevelMore500 ClassesClassSizes3rdAnd4thYearLevel

Toronto 20.23 9.25 4.55

Queens 21.80 1.33 4.60

McGill 11.34 7.52 4.93
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UBC 8.21 1.09 4.30

McMaster 25.98 0.88 4.29

Dalhousie 8.32 1.59 4.95

Western 10.56 2.38 5.08

Alberta 15.54 0.00 4.62

Ottawa 4.42 0.00 4.76

Sask 6.01 0.00 5.09

Sherbrooke 0.00 0.00 4.98

Montreal 2.88 0.00 4.83

Laval 2.16 0.00 4.91

Manitoba 5.99 0.00 4.85

Calgary 8.60 0.00 4.84

Classes3rdAnd4thYearLevel1To25 Classes3rdAnd4thYearLevel26To50 Classes3rdAnd4thYearLevel51To100

Toronto 22.25 30.12 30.74

Queens 24.71 30.94 25.46

McGill 33.07 36.49 23.04

UBC 15.14 28.78 32.29

McMaster 19.87 21.84 28.87

Dalhousie 34.92 32.68 25.11

Western 39.69 35.30 17.96

Alberta 26.32 27.74 28.43

Ottawa 26.55 31.36 33.42

Sask 35.97 41.83 17.67

Sherbrooke 24.36 50.92 22.74

Montreal 26.57 35.90 31.56

Laval 36.51 28.17 24.76

Manitoba 30.95 29.27 33.39

Calgary 25.77 40.73 24.85

Classes3rdAnd4thYearLevel101To250 Classes3rdAnd4thYearLevel251To500 Classes3rdAnd4thYearLevelMore500

Toronto 14.53 2.37 0

Queens 17.54 1.35 0

McGill 5.65 1.75 0

UBC 18.37 5.42 0

McMaster 26.11 3.31 0

Dalhousie 7.29 0.00 0

Western 7.05 0.00 0
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Alberta 16.32 1.19 0

Ottawa 8.66 0.00 0

Sask 4.53 0.00 0

Sherbrooke 1.98 0.00 0

Montreal 5.98 0.00 0

Laval 10.56 0.00 0

Manitoba 6.38 0.00 0

Calgary 8.65 0.00 0

ClassesTaughtByTenuredFaculty FacultyFacultyWithPhD AwardsPerFullTimeFaculty

Toronto 68.90 98.6 10.8

Queens 62.10 95.3 13.7

McGill 49.50 94.3 8.9

UBC 52.90 98.9 8.8

McMaster 57.90 96.9 4.8

Dalhousie 54.40 92.7 2.2

Western 73.00 98.3 4.0

Alberta 45.90 98.9 6.4

Ottawa 58.70 97.2 5.6

Sask 61.10 93.7 3.4

Sherbrooke 66.80 92.7 3.5

Montreal 60.10 94.4 5.9

Laval 68.00 97.8 4.2

Manitoba 44.30 95.9 1.8

Calgary 61.39 91.9 3.6

HumanitiesAverageGrantSizePerFaculty HumanitiesNumberOfGrantsPerFaculty

Toronto 20719 57.17

Queens 8902 29.79

McGill 19506 61.96

UBC 15105 47.99

McMaster 9706 31.62

Dalhousie 7819 27.90

Western 8311 25.53

Alberta 10464 32.80

Ottawa 11396 33.48

Sask 7295 18.40

Sherbrooke 5891 14.50
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Montreal 15629 37.30

Laval 8531 25.48

Manitoba 6289 20.45

Calgary 5510 19.89

MedicalScienceGrantsAverageGrantSizePerFaculty MedicalScienceNumberOfGrantsPerFaculty

Toronto 126520 218.25

Queens 81948 103.21

McGill 111852 161.38

UBC 92459 152.14

McMaster 78282 130.10

Dalhousie 43649 88.35

Western 84162 152.01

Alberta 84031 168.12

Ottawa 72827 126.93

Sask 37278 74.60

Sherbrooke 55142 99.42

Montreal 90428 133.57

Laval 74439 126.15

Manitoba 44526 82.80

Calgary 72167 118.49

FinancesOperatingBudget FinancesScholarshipsBursariesPercOfBudget FinancesStudentServicesPercOfBudget

Toronto 9878 13.29 7.37

Queens 8053 14.00 4.60

McGill 8860 11.34 5.46

UBC 7110 12.14 8.05

McMaster 8451 11.53 6.53

Dalhousie 8472 10.16 4.04

Western 8500 15.88 5.16

Alberta 9467 12.47 4.77

Ottawa 9532 10.53 5.72

Sask 9611 5.11 3.66

Sherbrooke 7836 11.81 4.33

Montreal 9490 10.20 4.34

Laval 8628 7.94 4.42

Manitoba 8108 5.42 3.93

Calgary 8684 10.26 5.16
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LibraryTotalLibraryHoldingsThousand LibraryHoldingsPerStudent LibraryAcquisitions LibraryExpenses

Toronto 14468 258 50.66 8.30

Queens 5402 289 50.79 6.82

McGill 4919 200 47.97 7.27

UBC 8903 253 41.50 7.81

McMaster 3116 156 46.35 5.25

Dalhousie 2252 167 42.75 5.02

Western 7904 283 58.10 7.74

Alberta 10029 337 47.84 7.30

Ottawa 4279 176 46.85 5.14

Sask 4387 286 49.97 6.65

Sherbrooke 1859 138 49.54 4.63

Montreal 5202 145 40.48 5.78

Laval 4716 189 49.28 4.95

Manitoba 3211 155 41.62 7.60

Calgary 509 210 44.62 6.07

ReputationAlumniSupport ReputationalRanking TotalRanking

Toronto 26.80 99.0 1

Queens 16.20 98.0 2

McGill 18.80 97.9 3

UBC 14.50 96.9 6

McMaster 13.60 97.5 4

Dalhousie 13.90 50.0 11

Western 25.80 70.0 7

Alberta 14.70 96.0 5

Ottawa 13.50 35.0 14

Sask 13.40 60.0 9

Sherbrooke 18.50 60.3 8

Montreal 15.90 55.0 10

Laval 12.40 40.0 13

Manitoba 14.80 30.0 15

Calgary 14.09 45.0 12
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Maclean’s condensed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Toronto 86.5 99.78 92.6 3.8 16.6 6.2 95.8 7.7 3.18 6.03 9.37 19.86 35.25 20.23 9.25 4.55 22.25 30.12 30.74

Queens 89.0 100.00 91.6 14.2 24.9 2.2 95.5 8.5 3.34 4.91 9.46 24.51 38.00 21.80 1.33 4.60 24.71 30.94 25.46

McGill 89.3 99.77 92.5 30.0 22.8 17.9 92.4 9.9 3.54 9.07 13.43 25.91 32.72 11.34 7.52 4.93 33.07 36.49 23.04

UBC 88.5 99.55 88.1 13.4 23.6 8.6 90.9 7.8 3.73 9.82 15.62 22.96 42.31 8.21 1.09 4.30 15.14 28.78 32.29

McMaster 85.0 99.98 89.2 1.7 21.0 6.8 90.1 5.8 3.19 3.23 11.29 14.19 44.43 25.98 0.88 4.29 19.87 21.84 28.87

Dalhousie 84.4 96.85 87.9 52.6 20.9 6.1 83.9 6.9 3.80 7.53 19.71 29.70 33.15 8.32 1.59 4.95 34.92 32.68 25.11

Western 88.1 99.96 91.8 4.6 14.5 4.8 94.9 4.8 4.06 16.65 19.72 32.00 18.69 10.56 2.38 5.08 39.69 35.30 17.96

Alberta 85.9 96.31 82.3 15.2 26.4 3.4 84.7 7.1 3.66 7.75 15.61 26.68 34.43 15.54 0.00 4.62 26.32 27.74 28.43

Ottawa 83.7 91.74 90.3 13.5 20.9 5.8 89.8 4.6 3.90 10.36 17.08 29.24 38.90 4.42 0.00 4.76 26.55 31.36 33.42

Sask 86.5 93.59 86.8 5.8 29.3 0.8 84.4 3.1 4.19 16.51 25.10 25.58 26.80 6.01 0.00 5.09 35.97 41.83 17.67

Sherbrooke 86.5 97.89 90.5 3.6 17.5 1.4 93.8 4.1 4.74 19.55 41.59 32.10 6.76 0.00 0.00 4.98 24.36 50.92 22.74

Montreal 87.6 99.30 91.6 7.9 20.8 12.8 90.0 6.0 4.24 14.26 19.70 44.71 18.45 2.88 0.00 4.83 26.57 35.90 31.56

Laval 86.1 97.02 79.4 2.4 20.3 11.5 95.2 5.7 4.25 20.82 16.89 31.25 28.89 2.16 0.00 4.91 36.51 28.17 24.76

Manitoba 83.1 82.31 84.8 9.1 17.4 5.1 85.1 5.2 3.79 7.40 17.54 28.03 41.02 5.99 0.00 4.85 30.95 29.27 33.39

Calgary 82.6 91.20 78.6 12.9 17.0 1.9 84.3 5.1 3.70 6.75 15.22 27.96 41.48 8.60 0.00 4.84 25.77 40.73 24.85

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Toronto 14.53 2.37 0 68.90 98.6 10.8 20719 57.17 126520 218.25 9878 13.29 7.37 14468 258 50.66 8.30 26.80 99.0 1

Queens 17.54 1.35 0 62.10 95.3 13.7 8902 29.79 81948 103.21 8053 14.00 4.60 5402 289 50.79 6.82 16.20 98.0 2

McGill 5.65 1.75 0 49.50 94.3 8.9 19506 61.96 111852 161.38 8860 11.34 5.46 4919 200 47.97 7.27 18.80 97.9 3

UBC 18.37 5.42 0 52.90 98.9 8.8 15105 47.99 92459 152.14 7110 12.14 8.05 8903 253 41.50 7.81 14.50 96.9 6

McMaster 26.11 3.31 0 57.90 96.9 4.8 9706 31.62 78282 130.10 8451 11.53 6.53 3116 156 46.35 5.25 13.60 97.5 4

Dalhousie 7.29 0.00 0 54.40 92.7 2.2 7819 27.90 43649 88.35 8472 10.16 4.04 2252 167 42.75 5.02 13.90 50.0 11

Western 7.05 0.00 0 73.00 98.3 4.0 8311 25.53 84162 152.01 8500 15.88 5.16 7904 283 58.10 7.74 25.80 70.0 7

Alberta 16.32 1.19 0 45.90 98.9 6.4 10464 32.80 84031 168.12 9467 12.47 4.77 10029 337 47.84 7.30 14.70 96.0 5

Ottawa 8.66 0.00 0 58.70 97.2 5.6 11396 33.48 72827 126.93 9532 10.53 5.72 4279 176 46.85 5.14 13.50 35.0 14

Sask 4.53 0.00 0 61.10 93.7 3.4 7295 18.40 37278 74.60 9611 5.11 3.66 4387 286 49.97 6.65 13.40 60.0 9

Sherbrooke 1.98 0.00 0 66.80 92.7 3.5 5891 14.50 55142 99.42 7836 11.81 4.33 1859 138 49.54 4.63 18.50 60.3 8

Montreal 5.98 0.00 0 60.10 94.4 5.9 15629 37.30 90428 133.57 9490 10.20 4.34 5202 145 40.48 5.78 15.90 55.0 10

Laval 10.56 0.00 0 68.00 97.8 4.2 8531 25.48 74439 126.15 8628 7.94 4.42 4716 189 49.28 4.95 12.40 40.0 13

Manitoba 6.38 0.00 0 44.30 95.9 1.8 6289 20.45 44526 82.80 8108 5.42 3.93 3211 155 41.62 7.60 14.80 30.0 15

Calgary 8.65 0.00 0 61.39 91.9 3.6 5510 19.89 72167 118.49 8684 10.26 5.16 509 210 44.62 6.07 14.09 45.0 12
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Universities and variables

> row.names(Macleans)

[1] "Toronto" "Queens" "McGill" "UBC" "McMaster"

[6] "Dalhousie" "Western" "Alberta" "Ottawa" "Sask"

[11] "Sherbrooke" "Montreal" "Laval" "Manitoba" "Calgary"

> names(Macleans)

[1] "StudentBodyAverageEnteringGrade" "StudentProportionWith75PercOrHigher"

[3] "StudentProportionWhoGraduate" "StudentOutOffProvince1stYear"

[5] "StudentInternationalGraduate" "StudentInternational1stYear"

[7] "StudentRetentionRate" "StudentAwards"

[9] "ClassesClassSizes1stAnd2ndYearLevel" "Classes1stAnd2ndYearLevel1To25"

[11] "Classes1stAnd2ndYearLevel26To50" "Classes1stAnd2ndYearLevel51To100"

[13] "Classes1stAnd2ndYearLevel101To250" "Classes1stAnd2ndYearLevel251To500"

[15] "Classes1stAnd2ndYearLevelMore500" "ClassesClassSizes3rdAnd4thYearLevel"

[17] "Classes3rdAnd4thYearLevel1To25" "Classes3rdAnd4thYearLevel26To50"

[19] "Classes3rdAnd4thYearLevel51To100" "Classes3rdAnd4thYearLevel101To250"

[21] "Classes3rdAnd4thYearLevel251To500" "Classes3rdAnd4thYearLevelMore500"

[23] "ClassesTaughtByTenuredFaculty" "FacultyFacultyWithPhD"

[25] "AwardsPerFullTimeFaculty" "HumanitiesAverageGrantSizePerFaculty"

[27] "HumanitiesNumberOfGrantsPerFaculty" "MedicalScienceGrantsAverageGrantSizePerFaculty"

[29] "MedicalScienceNumberOfGrantsPerFaculty" "FinancesOperatingBudget"

[31] "FinancesScholarshipsBursariesPercOfBudget" "FinancesStudentServicesPercOfBudget"

[33] "LibraryTotalLibraryHoldingsThousand" "LibraryHoldingsPerStudent"

[35] "LibraryAcquisitions" "LibraryExpenses"

[37] "ReputationAlumniSupport" "ReputationalRanking"

[39] "TotalRanking"
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Variables omitted from the analysis

> Macleans[order(Macleans[,38],decreasing=TRUE),c(22,38,39)]

Classes3rdAnd4thYearLevelMore500 ReputationalRanking TotalRanking

Toronto 0 99.0 1

Queens 0 98.0 2

McGill 0 97.9 3

McMaster 0 97.5 4

UBC 0 96.9 6

Alberta 0 96.0 5

Western 0 70.0 7

Sherbrooke 0 60.3 8

Sask 0 60.0 9

Montreal 0 55.0 10

Dalhousie 0 50.0 11

Calgary 0 45.0 12

Laval 0 40.0 13

Ottawa 0 35.0 14

Manitoba 0 30.0 15

> Mcleans=Macleans[,-c(22,38,39)]
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Hierarchical clustering with 1/|ρ|− 1

20 15 10 5 0 -5

StudentInternational1stYear
Classes3rdAnd4thYearLevel51To100
LibraryAcquisitions
FacultyFacultyWithPhD
LibraryTotalLibraryHoldingsThousand
LibraryHoldingsPerStudent
LibraryExpenses
Classes3rdAnd4thYearLevel1To25
ClassesClassSizes3rdAnd4thYearLevel
Classes3rdAnd4thYearLevel101To250
Classes3rdAnd4thYearLevel251To500
FinancesStudentServicesPercOfBudget
Classes3rdAnd4thYearLevel26To50
Classes1stAnd2ndYearLevel26To50
Classes1stAnd2ndYearLevel101To250
Classes1stAnd2ndYearLevel51To100
Classes1stAnd2ndYearLevel251To500
ClassesClassSizes1stAnd2ndYearLevel
Classes1stAnd2ndYearLevel1To25
Classes1stAnd2ndYearLevelMore500
HumanitiesAverageGrantSizePerFaculty
HumanitiesNumberOfGrantsPerFaculty
MedicalScienceGrantsAverageGrantSizePerFaculty
MedicalScienceNumberOfGrantsPerFaculty
StudentAwards
AwardsPerFullTimeFaculty
FinancesScholarshipsBursariesPercOfBudget
ReputationAlumniSupport
StudentProportionWhoGraduate
StudentBodyAverageEnteringGrade
StudentProportionWith75PercOrHigher
FinancesOperatingBudget
StudentInternationalGraduate
StudentOutOffProvince1stYear
StudentRetentionRate
ClassesTaughtByTenuredFaculty

agnes(as.dist(1/abs(cor(Mcleans))-1),diss=TRUE)
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12 clusters, perhaps

30
36
29
32
33
35
23
34
19
20
31
17
16
21
12
14
18
11
10
13
9
28
24
8
25
26
15
27
7
22
6
5
4
3
2
1

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = cutree(Macvag, 12), dist = as.dist(1/abs(cor(Mcleans)) - 
Silhouette plot of     1))

Average silhouette width :  0.37

n = 36 12  clusters  Cj
j :  nj | avei∈Cj  si
1 :   3  |  0.29

2 :   1  |  0.00
3 :   1  |  0.00
4 :   1  |  0.00
5 :   2  |  0.27

6 :   7  |  0.40

7 :   7  |  0.49

8 :   5  |  0.51

9 :   2  |  0.43

10 :   4  |  0.38

11 :   1  |  0.00
12 :   2  |  0.29
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The clusters

1| "StudentBodyAverageEnteringGrade" "StudentProportionWith75PercOrHigher"

"StudentProportionWhoGraduate"

2| "StudentOutOffProvince1stYear"

3| "StudentInternationalGraduate"

4| "StudentInternational1stYear"

5| "StudentRetentionRate" "ClassesTaughtByTenuredFaculty"

6| "StudentAwards" "Classes1stAnd2ndYearLevelMore500"

"AwardsPerFullTimeFaculty" "HumanitiesAverageGrantSizePerFaculty"

"HumanitiesNumberOfGrantsPerFaculty" "MedicalScienceGrantsAverageGrantSizePerFaculty"

"MedicalScienceNumberOfGrantsPerFaculty"

7| "ClassesClassSizes1stAnd2ndYearLevel" "Classes1stAnd2ndYearLevel1To25"

"Classes1stAnd2ndYearLevel26To50" "Classes1stAnd2ndYearLevel51To100"

"Classes1stAnd2ndYearLevel101To250" "Classes1stAnd2ndYearLevel251To500"

"Classes3rdAnd4thYearLevel26To50"

8| "ClassesClassSizes3rdAnd4thYearLevel" "Classes3rdAnd4thYearLevel1To25"

"Classes3rdAnd4thYearLevel101To250" "Classes3rdAnd4thYearLevel251To500"

"FinancesStudentServicesPercOfBudget"

9| "Classes3rdAnd4thYearLevel51To100" "LibraryAcquisitions"

10|"FacultyFacultyWithPhD" "LibraryTotalLibraryHoldingsThousand"

"LibraryHoldingsPerStudent" "LibraryExpenses"

11|"FinancesOperatingBudget"

12|"FinancesScholarshipsBursariesPercOfBudget" "ReputationAlumniSupport"
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Class size variables

[1] "ClassesClassSizes1stAnd2ndYearLevel" "Classes1stAnd2ndYearLevel1To25"

[3] "Classes1stAnd2ndYearLevel26To50" "Classes1stAnd2ndYearLevel51To100"

[5] "Classes1stAnd2ndYearLevel101To250" "Classes1stAnd2ndYearLevel251To500"

[7] "ClassesClassSizes3rdAnd4thYearLevel" "Classes3rdAnd4thYearLevel1To25"

[9] "Classes3rdAnd4thYearLevel26To50" "Classes3rdAnd4thYearLevel101To250"

[11] "Classes3rdAnd4thYearLevel251To500" "FinancesStudentServicesPercOfBudget"

> plot(prcomp(Mcleans[,cutree(Mcvag,12) %in% (7:8)]))

> biplot(prcomp(Mcleans[,cutree(Mcvag,12) %in% (7:8)]),

+ cex=0.6,xlim=c(-.7,.7))
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Variances
prcomp(Mcleans[, cutree(Mcvag, 12) %in% (7:8)])
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Biplot
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How about universities?
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Dendrogram of  diana(x = daisy(Mcleans, stand = TRUE))

diana (*, "NA")
daisy(Mcleans, stand = TRUE)

H
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t

Divisive hierarchical clustering - the other versions yield similar
results, except for the single linkage - see next page, also, for the
explanation for the “doubled lines” in the right-hand side
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Odds and ends
1. > diana(daisy(Mcleans,stand=TRUE))$height

[1] 10.089735 11.997787 7.736485 8.867114 8.274415

[61 7.885711 8.476898 6.909834 10.552828 6.830103

[11] 7.647387 10.582905 13.411259 10.313927

2.
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Dendrogram of  agnes(x = daisy(Mcleans, stand = TRUE), method = "single")

agnes (*, "single")
daisy(Mcleans, stand = TRUE)
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3. Note: standardization is a must here, otherwise we would cluster
pretty much in the original variables 26, 28, 30, and 33.
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Model-based clustering

Distance-base methods - work well when distances can be trusted...

For instance, Euclidean distance can substantially depend on the
scaling of the original variables

Fitting mixtures of distributions (multivariate normal)
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