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FOREWORD TO THE SERIES

The Studies in Mathematical Geology (SMG) series was established 30 years ago 
to serve as an outlet for book-length contributions on topics of special interest not 
only to geomathematicians, but also to practitioners of various interdisciplinary sci-
entific branches that looked to the IAMG—the International Association for Math-
ematical Geology—for leadership in the application and use of mathematics in 
geoscientific research and technology. In due course the full scope of the Association, 
founded in 1968, was recognized. Thus in 2009 it became the International Asso-
ciation for Mathematical Geosciences. The current monograph, Principles of Math-
ematical Petrophysics, is the first to appear in the “new” Studies in Mathematical 
Geosciences (SMG) series.

SMG No. 9 is designed to address all aspects of mathematical petrophysics. By 
combining petrophysics and mathematical modeling, it bridges the gap between 
existing mathematical knowledge and the use of modern methods for reservoir char-
acterization, benefiting not only log analysts, petroleum engineers, petrophysicists, 
and geophysicists, but the field of geomathematics in general.

The Stanford IAMG conference mentioned in the author’s Preface took place in 
August 2009. As SMG editor, I was an enthusiastic participant in the discussion 
about yet another IAMG monograph. Tentatively entitled “Mathematical Petro-
physics,” the author estimated an August 2011 date for delivery of the completed 
manuscript and illustrations. Perfect! SMG 11 would appear in 2011. The contract 
for what was to have been SMG 9 had been signed and sealed in January 2009. And 
OUP had in hand the manuscript proposed as SMG 10. 

Robert Burns summed it up nicely in 1785 
The best-laid schemes o’ mice an’ men 
Gang aft agley

The appearance of John Doveton’s “SMG 11” (in 2011) was to have been my swan 
song. John has been a friend for over four decades, during three of which we were 
colleagues at the Kansas Geological Survey. No matter how awry various plans may 
have gone, I’m pleased to have seen this project through. John has succeeded in his 
effort to ensure that his book, SMG No. 9, incorporates every facet of modern petro-
physics technology. Yes, I’m singing now!

Jo Anne DeGraffenreid, Editor
Baldwin City, Kansas, USA

  





PREFACE

Mathematical astrophysics and mathematical geophysics have their own journals 
and conferences, where practitioners discuss mathematical formulations that come 
to grips with the physical processes of the cosmos and planet Earth. Mathematical 
petrophysics is by no means new. It started in 1942 with the publication of an equa-
tion: the Archie equation. Strictly speaking, there are two Archie equations. The first 
describes the resistivity of a rock filled with salt water. The second equation is con-
cerned with the resistivity of hydrocarbon-bearing formations and proposed a pre-
diction of hydrocarbon saturation. This quantitative outcome moved the vagueness 
of “log interpretation” to “log analysis” and was finally dignified with the name of 
“petrophysics” by Archie in 1950. The Archie equations are still used today, and the 
huge economic value of these and further developments is the principal reason why 
mathematical petrophysics is not an academic speciality. The consequences of poor 
mathematical decisions raise more than academic passions, because of potential 
losses of millions of dollars. Furthermore, the traditional differentiation between 
reservoir rocks and seals has recently crumbled with the emergence of resource 
plays, typified by tight porosities and minimal permeabilities. Consequently, math-
ematical petrophysicists continue to be challenged to propose new algorithms that 
characterize nontraditional targets as well as refining established methodologies to 
manage large but aging fields.

The idea of writing this book started with a discussion at an open-air banquet on 
the Stanford golf course at an IAMG conference. Further encouragement came at an 
SPWLA topical conference on “Computational Petrophysics” held in Ashville, North 
Carolina. The extraordinary power of modern computer environments to actualize 
complex petrophysical models was not disputed, and the ability of young petrophysi-
cists to navigate their way through a labyrinth of software options was considered to 
be admirable. However, a model is a model, and as the eminent statistician George 
Box famously said, “All models are wrong; some models are useful.” Consequently, 
the ability to reflect on the limitations and strengths of any petrophysical model is an 
important consideration. Classic default equations implemented within large soft-
ware packages are often based on small data sets, and their historical development 
will be reviewed in this book. As an additional consideration, an equation that gave 
a reasonable solution in the Texas Gulf Coast may not necessarily perform so well in 
the steppes of Kazakhstan. So, the purpose of this book is to review mathematical 
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petrophysics ranging across microscopic to geographic scales from a perspective of 
strategic thinking rather than tactical cookbook recipes.

While reviewing a broad range of published petrophysical studies from around 
the world, a great proportion of the data sets analyzed in this book come from sub-
surface Kansas. In contrast with data from the Middle East, large numbers of these 
Midwest logs and core data sets are available in the public domain and can be down-
loaded from the Kansas Geological Survey website. The website also contains nu-
merous petrophysical studies by Survey scientists, many of which I have cited. I have 
learned an extraordinary amount from my colleagues, past and present, in the Math-
ematical Geology and Energy Research sections, and my gratitude is reflected in my 
dedication of this book to them. My special thanks go to Jo Anne DeGraffenreid for 
her meticulous editing and John Davis for his technical critiques and advice over the 
period of this book project. However, any errors that remain are my responsibility. 
As a log petrophysicist, it has been my privilege to showcase the data supplied by the 
core petrophysicist maestro, Alan Byrnes, which have enriched and illuminated the 
wireline measurements. Finally, I owe special thanks to the Kansas Geological Sur-
vey as a stimulating and collegial institution for research, and to Survey directors, 
past and present, for their encouragement and support.

John H. Doveton
Kansas Geological Survey

Lawrence, Kansas
October 2013
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CHAPTER 1

Fluid Saturation Evaluation

THE ARCHIE EQUATIONS

In his treatise on electricity and magnetism, Maxwell (1873) published an equa-
tion that described the conductivity of an electrolyte that contained nonconducting 
spheres as:

Ψ
Φ
Φ

= =
−

C
C

o

w

2
3( )

where the “meaning” of Ψ (psi) has been most commonly interpreted as some ex-
pression of tortuosity, Co and Cw are the conductivity of the medium and the elec-
trolyte, respectively, and Φ is the proportion of the medium that is occupied by the 
electrolyte. Since that time, considerable efforts have been devoted to elucidation of 
the electrical properties of porous materials, particularly with the advent of the first 
resistivity log in 1927, which founded an entire industry focused on estimating fluid 
saturations in hydrocarbon reservoirs from downhole measurements.

To some degree, spirited discussions in the literature reflect two schools of 
thought, one that considers the role of the resistive framework from a primarily em-
pirical point of view, and the other that models the conductive fluid phase in terms 
of electrical efficiency. Clearly, the two concepts are intertwined because resistivity 
is the reciprocal of conductivity and the pore network is the complement of the rock 
framework. If the solid part of the rock is nonconductive, then the ability of a rock 
to conduct electricity is controlled by the conductive phase in the pore space, which 
should make the case for equations to be formulated from classical physical theory. 
This approach is typically developed using electrical flow through capillary tubes as 
a starting point. Unfortunately, the topological transformation of a capillary tube 
model to a satisfactory representation of a real pore network is a formidable chal-
lenge, so that mathematical solutions may not be acceptable, even though they are 
grounded in basic physics. The most successful model along these lines has been pro-
posed by Herrick and Kennedy (1994), who maintain that while the Archie equation 
is a useful parametric function, it has no physical basis. Some of their conclusions are 
reviewed at the end of this chapter.

 

 

 

 



[2 ]  Principles of Mathematical Petrophysics

One of the appeals of the empirical resistivity approach of Archie has been that 
its interpretation has been made from both rock-framework and pore-space perspec-
tives, rather than simply from the physics of the conductive pore network. An en-
gineer may view a reservoir as simply a collection of holes in a rock container, but 
the rock framework is the primal cause, in that its fabric is created by depositional 
and diagenetic processes, with pore spaces and their connections as a consequence. 
In this book, we will pursue the empirical approach mainly because the Archie equa-
tion is so entrenched in published petrophysical theory, but also because it has stood 
the test of time and can provide useful insights into reservoir properties. However, 
we will also take into account observations from alternative approaches and variants 
that aid in understanding and provide the basis for improved models and equations 
when formations fail to behave as “Archie rocks.”

From empirical observations of Gulf Coast sandstones, Archie (1942) established 
that the ratio of the resistivity of a completely brine-saturated rock (Ro) to the resist-
ivity of its contained brine (Rw) was a constant for any given rock sample, and gave 
the name, resistivity formation factor (F) to this proportionality constant:

F
R
R

o

w

=

In a comparison with Maxwell’s equation, we see that Maxwell’s psi is equivalent to 
the reciprocal of Archie’s formation factor, F. In the same paper, Archie (1942) fur-
ther stated that “knowing the porosity of the sand in question, a fair estimate may be 
made of the proper value to be assigned to F, based upon the indicated empirical re-
lationship F = Φ−m.” This observation was based on many laboratory measurements, 
and Archie went on to suggest that “m has been found to range between 1.8 and 
2.0 for consolidated sandstones . . . loosely or partly consolidated sands might have 
a value of m anywhere between 1.3 and 2.” Although the origins of this first Archie 
equation are empirical, Bussian (1982) showed that the Archie equation was equiva-
lent to the Hannai-Bruggeman equation at the low limit of electrical frequency and 
where the rock framework conductivity was effectively zero. This formulation is the 
first Archie equation, as distinct from the second Archie equation that considers the 
resistivity of partially water-saturated rocks.

Archie did not give a name to m, but Guyod (1944) introduced the term  
“cementation exponent,” which is still widely used but is increasingly replaced 
by “porosity exponent,” which more accurately acknowledges the multiplicity of 
processes that can affect m. The interpretation of the internal geometric elements 
that control m can be expressed either in terms of pore network or framework 
architecture, or both. One of the earliest interpretations considered the pore 
space in terms of a complex bundle of capillary tubes. If the tubes have a constant 
cross-sectional area, then resistivity variation is controlled by the length of the 
tubes. The porosity exponent, m, is then effectively a measure of pore channel 
tortuosity. However, capillary tubes are a restrictive representation of the elab-
orate branching of the pore network. Some authors, such as Perez-Rosales (1982), 
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consider the pore space to be subdivided into channels and traps, where channel 
pores are the only elements that contribute to the electrical current flow. Under 
this model, the porosity exponent is a measure of the relative partition between 
conductive channel pores and nonconductive trap pores. Still other authors, such 
as Etris et al. (1989), have expanded the representation to a more realistic system 
of pore bodies connected by pore throats. In this case, it is argued that the major 
control on the formation factor is the distribution of pore-throat areas. In a later 
paper that expanded this model, Ehrlich and others (1991) suggested that the 
porosity exponent, m, was effectively a measure of the ratios of the logarithms of 
the pore-throat area to the pore-body area.

Turning from pore-network to framework models of explication, much has been 
learned from laboratory measurements of electrical current flow in grain packs with 
varying sizes, shapes, and degrees of sorting. Jackson et al. (1978) showed that size 
and sorting of grain-size had little effect on the porosity exponent, but that this 
was sensitive to grain shape. The porosity exponent increased as grains became less 
spherical, and it was highest in sediments dominated by platy grains. The conclu-
sions from these empirical data were supported independently by a mathematical 
derivation of Sen et al. (1981). Mendelson and Cohen (1982) observed that the por-
osity exponent was lowest in rocks where the grains had the same shape and orien-
tation. However, porosity exponent values were increased if the grains were aligned 
with a distribution of shapes or if they were randomly oriented. In summary, grain 
properties that control porosity exponent variation are shape, shape distribution, 
and orientation.

Archie (1942) went on to consider the resistivity of partially saturated rocks, 
where the pore space was partitioned between conductive formation water and non-
conductive hydrocarbon. He proposed a second Archie equation of the form:

S
R
Rw
o

t

n

=






1

where Sw is the fractional water saturation, Rt is the formation resistivity, and n 
is now known as the “saturation exponent,” and he concluded that “the value of n 
appears to be close to 2” for both consolidated and unconsolidated sands that were 
clean (shale-free). Although he was encouraged by his laboratory measurements, 
Archie (1942) was cautious in extrapolating the relationship into the subsurface, 
observing that “there is a possibility that the manner in which oil or gas is distrib-
uted in the pores may be so different that these relations derived in the laboratory 
might not apply underground.” The second Archie equation has proven itself to be 
a viable predictor in the years following Archie’s work, being universally applied 
to hydrocarbon reservoirs, although major developments in the understanding of 
wettability have made Archie’s cautionary comments rather prophetic. The complex 
relationship between wettability and the saturation exponent will be discussed later 
in this chapter.
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Archie (1942) combined his two equations to solve for water saturation in what is 
now known as “the” Archie equation:

S
FR
Rw

w

t

n=

which remains the most widely applied equation in petrophysics, in spite of all 
attempts to replace this empirical relationship with a more rigorous formulation 
made up of terms identified with distinctive physical properties.

THE HUMBLE EQUATION AND ITS VARIANTS

Archie’s original pioneering work was based on shale-free sandstones, so we shall 
first review how his equations were deployed from the laboratory to subsurface res-
ervoir evaluation of sandstones. In order for the first Archie equation of:

F m= 1
Φ

to be used in oilfield operations, some knowledge of the value of m would be required, 
which could further be complicated by changes in its value within a logged forma-
tion. From their study of a variety of sandstone core measurements, Winsauer et al. 
(1952) proposed the relationship:

F = 0 62
2 15

.
.Φ

which became known as the “Humble equation,” named for the company that they 
worked for (now Exxon). If valid, then this modified Archie equation could be applied 
to sandstones without requiring any knowledge of the value of the porosity expo-
nent, m. The relationship of the Humble equation with respect to the Archie equa-
tions with differing values of m is shown in Figure 1.1.

The generalization of the Archie equation to the form:

F
a
m=

Φ

moved it from an empirical, but functional, equation to an approximating statistical 
function because the formation factor must be unity at 100 percent porosity, which 
will only occur when a is unity. A variety of names have been used for the parameter 
a, of which the commonest is “tortuosity factor,” while its detractors generally do 
not give it a name, presumably so as to avoid conferring any credibility on the par-
ameter. So, for example, Maute et al. (1992) concluded from core measurements that 
a was “a weak-fitting parameter, with no physical significance. In general, we recom-
mend that a be fixed to unity.” Glover (2009) was more forthright with his criticism, 
stating that “reports that contain values of the constant a that are anything other 
than exactly unity are the result of sloppy thinking and the mindless application of 
curve-fitting programs.”
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If the parameter a is significantly different from unity, then this implies that the 
porosity exponent, m, is correlative with pore volume. If a is less than unity, then 
the porosity exponent decreases with increasing porosity. This is the case with the 
Humble equation and at least makes it consistent with the observations of Archie 
(1942) that unconsolidated sands (with generally higher porosities) have lower por-
osity exponents than consolidated sandstones. However, the values of a and m are 
interdependent in practice (and demonstrated mathematically by Zinszner and Pel-
lerin, 2007), so that once a takes a value different from unity, the porosity exponent 
is adjusted to accommodate the change, and all potential “meaning” of m is lost. If 
indeed there is a systematic trend of porosity exponent with pore volume, this is best 
modeled explicitly by the equation:

F c d= +

1
Φ Φ

where m has been replaced by a function of porosity with parameters c and d. In this 
case, the Archie model is driven by a variable-m porosity exponent, where the value 
of m is assigned by the porosity value. Not only is this variable porosity exponent a 
viable subject for interpretation, but the equation honors the physical constraint of 
a unit-value formation factor at total porosity.

In view of its almost universal status as the default equation for sandstones in 
log-analysis charts and software packages, it is sobering to reflect that the Humble 
equation is based on only thirty sandstone core samples. On the other hand, Win-
sauer et al. (1952) made a thorough and thoughtful analysis of their data by includ-
ing mineralogy, clay content, porosity, permeability, packing index, grain size, sorting, 
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Figure 1.1: The first Archie equation for a range values of the porosity exponent, m, graphed 
together with the Humble equation on a double-logarithmic crossplot of the formation resist-
ivity factor and porosity.
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skewness, and roundness, in their considerations of properties that influenced the 
formation factor. Doveton (1986) reanalyzed their data statistically and concluded 
that there were significant correlations that collectively implied that better sorted 
sands with more rounded grains generated lower values for the porosity exponent. 
The Humble equation and the data points on which it is based are shown in Figure 1.2. 
Also shown is an alternative default equation that is widely used for sandstones, which 
is expressed by:

F = 0 81
2

.
Φ

Although it has no formal name, it is commonly known as the “Tixier” equation, in 
honor of the Schlumberger pioneer, possibly because he had devised it as a simpler 
alternative formulation to the Humble equation that was easier to calculate. The par-
ameter a values of the Humble and Tixier equations can be seen as their intercepts 
at fractional porosity readings of unity (100 percent porosity), while m reflects their 
slope. The geometry of the plot also demonstrates the linked relationship between a 
considered as a variable and the porosity exponent, m, because changes in values of a 
to lower values results in higher values of porosity exponent slopes.

If the value of a is maintained at unity, then the data of Winsauer et al. (1952) 
can be analyzed from an orthodox Archie perspective (Figure 1.3). The broad scatter 
of porosity exponent values calculated for each core shows a generalized trend of 
decreasing values of m at higher porosities and is in general agreement with the 
ranges proposed by Archie (1942). However, the variability in the porosity expo-
nent at any given porosity raises the question as to the effect on water saturation 
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Figure  1.2: Default generalized first Archie equations for sandstones:  the Humble equation 
and the Tixier equation. Data points of measured porosity and formation factor used to estab-
lish the Humble equation are also shown.
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calculated by the Archie equation. This will be discussed in some detail later in the 
chapter when considered in conjunction with the saturation exponent, n, as part of 
uncertainty analysis. In their discussion of the performance of the Humble equa-
tion, Winsauer et al. (1952) concluded that “resistivity factors can be approximated 
by means of a relation involving only resistivity factor and porosity,” and that when 
applying the equation to data published by Archie (1950), the results were matched 
“with acceptable precision.” As quoted earlier, Archie (1942) had stated that results 
from the Archie equation provided a “fair estimate” of the formation factor. There-
fore, none of these authors had made extravagant claims as to the accuracy of the 
predictions, but a measured judgement that the methodology met the operational 
requirements of the mid-twentieth century when applied to logging measurements 
of that era. The Archie equation is still universally applied today for the calculation 
of water saturation because it works well, provided the acceptable error associated 
with the saturation prediction is considered explicitly, because this dictates the de-
gree of accuracy required for Archie equation parameter values. The demands placed 
on water saturation estimations used in simulation modeling or reserve estimation 
are far more stringent than for a calculation used as the basis for a decision to run a 
drill-stem test.

Core measurements of formation factor and the elucidation of porosity expo-
nent values are comparatively cheap procedures, so that reservoir-specific investi-
gations are recommended, particularly in the low-porosity range, where variability 
in m has greater influence on water saturation estimates. Because the porosity ex-
ponent is sensitive to changes in fabric, values can be expected to cluster in associa-
tions that mirror aspects of lithofacies and porosity-permeability petrofacies. So, 
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Figure 1.3: Crossplot of the porosity exponent, m, and the porosity for core samples used as 
the basis for the Humble equation compared with ranges suggested by Archie for sandstones at 
differing stages of consolidation.
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for example, Bhattacharya et al. (2002) made core measurements of porosity expo-
nents from Pennsylvanian Morrow sandstones from an incised valley, where chan-
nel facies cores were clearly distinguished from the overlying estuarine sand facies 
(Figure 1.4). While the channel facies had a porosity exponent of 1.8, the estuarine 
facies were characterized by a value of 2.0. This distinction was applied in selectively 
calculating water saturation from the Archie equations keyed to facies-specific por-
osity exponents.

SENSITIVITY ANALYSIS OF ARCHIE EQUATION PARAMETERS

In a letter to the editor of The Log Analyst, Brown (1997) reminded readers that re-
gardless of the major improvements in resistivity tool technology reported exten-
sively in the previous issue of the journal, accuracy in hydrocarbon estimation was 
still determined by the appropriate application of the Archie equation. In particular, 
he focused his attention on the Archie exponents of m and n, which he considered to 
be “frequently poorly characterized.” Using simple graphs to make his point, Brown 
(ibid.) concluded that errors in the porosity exponent, m, are most critical at low 
porosities and high water saturations, while errors in the saturation exponent, n, 
have the greatest effect at intermediate saturations.

The role of each of the parameters in the Archie equation in their individual 
effects on water saturation estimation can be analyzed systematically through sensi-
tivity analysis. Chen and Fang (1986) described the mathematical equations of error 
propagation necessary for error estimation. These use the partial derivative of each 
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Figure  1.4: Type section of incised valley Pennsylvanian Morrow sandstone of southwest 
Kansas together with core measurements of the formation factor and porosity that differ-
entiate distinctive porosity exponent values for channel and estuarine facies. Modified from 
Buatois et al. (2002), courtesy Elsevier.
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parameter with respect to water saturation applied to the partitioning of the water 
saturation variance between variances associated with each parameter. Now, when 
the Archie equations are combined and written as a solution for water saturation, 
then the equation is:
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which has six parameters. If these are assumed to be random variables, then the vari-
ance of the water saturation is given by:
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which is the sum of the squared partial derivative of each parameter multiplied by its 
variance. If Cx is the fractional error contribution of parameter x to the water satur-
ation variance and σx is its standard deviation, then the effect of the parameter can 
be evaluated from the equation:
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A standard deviation must first be assigned to each parameter, either from experi-
mental data or as hypothetical values to evaluate different scenarios. Also, the frac-
tional error contributions of each parameter can either be made equal in the simplest 
model or assigned unequal uncertainties from petrophysical considerations. An ex-
ample of the error analysis run in unequal uncertainties mode is shown in Figure 
1.5, where Chen and Fang (1986) assigned low uncertainties to m and n, as con-
trasted with a higher uncertainty for porosity. In this case, while uncertainties in 
porosity become critical at low porosities, the relative importance of m and n changes 
with porosity. In allocating budgets for core measurements, investments should be 
focused on porosity exponent measurement in reservoirs with low porosity, while 
the saturation exponent should receive special attention at higher porosities. Be-
cause the error analysis is driven by simple equations, the procedure can be used to 
evaluate a variety of scenarios to evaluate the sensitivity of water saturation estima-
tions to changes in Archie equation parameters.

An alternative methodology is to explore sensitivity effects of the Archie equa-
tion through the application of Monte Carlo simulation. The simulation can be based 
on normally-distributed Archie parameters taken as independent random variables 
applied to the generation of multiple water saturation estimates. In this case, the 
simulation results conform to the expectations of the partial derivative-variance 
solution without the uncertainty characterization. An advantage of the normal dis-
tribution is that results can be phrased in terms of probability, but the assumption 
of a normal distribution for the parameters may not be warranted. However, Monte 
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Carlo simulations can be designed to surmount nonnormality and other issues. 
A simple and pragmatic alternative to a normal distribution is a triangular distri-
bution whose ends are anchored to minimum and maximum parameter values, with 
the apex set at the median. Also, the basic assumption that the parameters are inde-
pendent is commonly not met. So, for a more realistic simulation, the independent 
first-order model should be expanded to accommodate parameter intercorrelation, 
as pointed out by Zeybek et al. (2009) who observed that inclusion of intercorrel-
ation could either increase or decrease uncertainties in water saturation estimation.

NON-ARCHIE SANDSTONES

The range of sandstone reservoirs that qualify as viable exploration targets has 
expanded dramatically in recent years, so that tight sandstones that would have 
been dismissed as non-pay in the last century are now commercial gas producers. 
The Cretaceous Mesaverde sandstone in the western United States provides a classic 
example of a tight gas sand whose analysis by the Archie equation requires some 
judicious thought, as discussed by Cluff and Byrnes (2009). Formation factors mea-
sured for a large set of Mesaverde tight gas sandstone cores were converted to por-
osity exponents and plotted against porosity (Figure 1.6). Although the values of 
m at porosities greater than 10 percent show ranges that are fully consistent with 
the work of Archie and other investigators, at lower porosities there is a systematic 
plunge to markedly lower porosity exponents. As will be discussed later, a similar 
phenomenon is observed in carbonate rocks, which is usually attributed either to the 
influence of fractures or a change in pore geometry from pore bodies linked by throats 
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Figure 1.5: Example of an error analysis run in unequal uncertainties mode to evaluate the 
relative sensitivity of the water saturation estimation from the Archie equation with respect 
to porosity and the exponents, m and n, over a porosity range. From Chen and Fang (1986), 
courtesy SPWLA.
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to more slot-like shapes. These factors may apply to the Mesaverde sandstone but, 
more importantly, formation factors were observed by Cluff and Byrnes (2009) to 
vary systematically with water salinity. At these low porosities and low salinities, the 
role of conductivity introduced by the cation-exchange capacity of clays becomes in-
creasingly important and contrasts with sandstones that have higher porosities and 
salinities, where the majority of the conduction is carried by the saltwater phase in 
conformance with the Archie equation model. A shaly sandstone resistivity equation 
model is therefore appropriate to replace an Archie equation formulation in the cal-
culation of water saturations. The application of the Humble equation or an Archie 
equation with a typical porosity exponent would overestimate water saturation and 
so increase the possibility of overlooking significant gas reserves. In fairness, it 
should be noted that all but one of the core samples used by Winsauer et al. (1952) 
for the Humble equation exceeded 13 percent porosity. The tightest core sample had 
a porosity of 6.7 percent and a computed porosity exponent of 1.56 (see the outlier 
on Figure 1.3), a value which is consistent with the Mesaverde trend.

Difficulties in the estimation of water saturation over the expanding spectrum of 
commercial reservoir rock types has led to the concept of the “Archie rock” to pro-
vide a reference standard from which to develop strategies to analyze “non-Archie 
rocks.” Quite simply, an Archie rock is one that meets the assumptions of the Archie 
model to an acceptable degree. These assumptions require a nonconductive matrix 
with a unimodal, connected pore system that is filled with water whose salinity is 
sufficiently high in order to provide electrical conductivity that dominates any po-
tential surface effects. The Archie rock is somewhat analogous to an “ideal gas,” in 
that Boyle’s and Charles’ laws of ideal gas behavior give generally acceptable results 
for real gases, which deviate from the ideal because of the neglect of small molecular 
interaction effects. As we have seen, Mesaverde sandstones deviate progressively 
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against porosity and referenced to predictions from the Humble equation. Data from Cluff and 
Byrnes (2009).



[ 12 ]  Principles of Mathematical Petrophysics

from Archie rock at lower porosities and lower salinities to become increasingly more 
non-Archie in their behavior. In fact, the range between rocks that are acceptably 
Archie to non-Archie forms a continuum, as discussed by Worthington (1995), who 
suggested that this concept should be used as the basis for the petrophysical clas-
sification of reservoir rocks. Not only would criteria be developed to discriminate 
Archie from non-Archie rocks, but distinctions made between different variants of 
non-Archie rocks. By this means, appropriate water saturation algorithms could be 
applied to reservoirs with common styles of non-Archie properties. Worthington 
(1995) proposed the generic equation:
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F

x
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w= 



 + 





where Co is the conductivity of the formation completely saturated with water, Cw is 
the conductivity of the formation water, F is the formation factor, and x is an extra 
conductivity term. When x is zero, the expression collapses to the first Archie equation, 
written in conductivity terms. The role of the extra conductivity term can be evaluated 
by comparing formation factors measured in core with pore water of different salini-
ties. The extra conductivity term, x, is crossplotted against porosity from a sample of 
Mesaverde sandstone cores (Figure 1.7) calculated by a comparison of formation fac-
tors measured with pore waters of 40K and 200K ppm salinity. Worthington (1995) 
described a rule to discriminate Archie from non-Archie rocks, based on the ratio of Fa 
to F, where Fa is the measured formation factor and F is the expectation of the forma-
tion factor if electrical conduction was carried entirely by the formation water. For an 
ideal Archie rock, the ratio would be unity, and Worthington (ibid.) suggested that a 

15

10

Ex
tr

a 
co

nd
uc

tiv
ity

 te
rm

, x

5

0
0 0.05 0.1 0.15

Archie region

Non-Archie region

Porosity
0.2 0.25

Figure 1.7: The extra conductivity term, x, crossplotted against porosity for Mesaverde sand-
stone cores, with discrimination of Archie from non-Archie rocks using the rule proposed by 
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ratio of 0.9 would be appropriate in recognition of the statistical variability of Archie 
rocks. Cluff and Byrnes (2009) observed that a salinity of 40K ppm was fairly typical 
for Mesaverde sandstone formation waters, so they concluded that a non-Archie model 
keyed to this salinity was appropriate to provide good estimates of water saturation in 
zones with low porosity. In a two-step procedure, they first estimated a modified por-
osity exponent matched with a formation water with 40K salinity as:

mK40 0 676 1 22= +. log .Φ

by using the demonstrated correlation of porosity exponent with porosity. They then 
generalized the model for varying Mesaverde sandstone salinities by further modifi-
cation through the equation:

m m Ra K w= + −( )∗ +( ) 40 0 0118 0 355 0 758. . log .Φ

Mesaverde sandstones with porosities greater than 12 percent were considered to 
behave as Archie rocks and assigned a porosity exponent value of 1.95. A more con-
ventional shaly sand model approach to the Mesaverde sandstones was described by 
Chisholm et al. (1987), who used clay cation-exchange data to evaluate water satur-
ation using the Waxman-Smits equation.

It might be presumed that the term “non-Archie sandstones” is a synonym for 
“shaly sandstones,” but this is not necessarily the case. The conductivity associated 
with shale is caused by the cation-exchange properties of the constituent clays. Shaly 
sandstones that do not contain clays with an appreciable cation-exchange capacity, 
especially in association with high-salinity formation waters, may be difficult to dis-
tinguish operationally from Archie rocks. In addition, shale-free clastics may show ap-
preciable non-Archie characteristics if surface conductivity effects become important, 
such as in some siltstones or where low porosities severely reduce the formation 
water-conductivity component. In an extreme case, the sandstone matrix may contain 
metallic minerals whose conductivity is sufficient to violate the Archie-rock condition 
of a nonconductive framework. As an example, pyrite occurrence in the Sadlerochit 
sandstone of Prudhoe Bay required resistivity corrections in zones where the mineral 
occurred in clusters and exceeded a critical concentration (Clavier et al., 1976).

Consequently, the variety of potential reservoir sandstones with anomalously low 
resistivities favors a strategy that first classifies sandstones in the Archie/non-Archie 
continuum, as suggested by Worthington (1995), and then, by petrophysical com-
parison with other non-Archie reservoirs, determine the best method for water sat-
uration estimation.

SHALY SANDSTONE ANALYSIS

The most common reason for low-resistivity non-Archie sandstone is the conduct-
ivity associated with clay minerals, which causes the Archie equation to overesti-
mate the water saturation and therefore to be pessimistic in the search for oil or gas. 
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The economic implications of an ideal resistivity equation for shaly sandstones have 
stimulated considerable research and discussion by industrial petrophysicists over 
the years. In his review paper, Worthington (1985) documented the host of shaly 
sandstone equations that had developed up to that time and commented on their 
histories and interrelationships. Almost without exception, they revert to the Archie 
equation in the limit of no shale content, and are constructed with the concept of 
parallel resistances of the pore brine and conductive shale components. So, the gen-
eric equation takes the form of:
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where X is the conductivity contribution of the shale element, and the equation can 
be seen to be an expansion of the extra conductivity equation described earlier to 
accommodate partial water saturation.

Historically, two distinct model families of shaly sandstone equations have been 
developed. The older model considered the shale as a homogeneous conductive 
medium and developed resistivity equations keyed to Vsh, the volumetric fraction of 
shale in the rock. Although the physical basis of the model is incorrect, the equations 
often provide reasonable approximate solutions to water saturation, especially when 
the equation parameters are adjusted so that the results conform with local water 
saturation data measured from cores or production tests. Some of these equations 
are still widely used for this reason and also because of their relative simplicity and 
limited demands on additional input parameters. Probably the best known is that of 
Simandoux (1963), which originally was written as:
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where ε = 1 when Sw = 1, and ε < 1 when Sw< 1. The Simandoux equation was devel-
oped on the basis of laboratory measurements but was simplified by Bardon and Pied 
(1969) to a quadratic equation of water saturation to enable more practical field ap-
plication:
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The Simandoux equation was generally found to give reasonable estimates of 
water saturation in formations with higher salinity formation waters but was con-
sidered to be less satisfactory at lower salinities. In work with low-salinity sandstone 
reservoirs in Indonesia, Poupon and Levaux (1971) developed an equation that made 
a better match with field observations:
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The “Indonesia equation,” as it is generally known, became widely used across the 
world, so, for example, Moss (1992) stated that in the North Sea Brent Group fields 
the commonest shaly sand equation used was the Indonesian, “although there is no 
theoretical basis for its applicability to these sands.” Woodhouse and Warner (2004) 
pointed out that “the formula was empirically modeled in water-bearing shaly sand, 
but the detailed functionality for hydrocarbon-bearing sands is unsupported except 
by common sense and longstanding use.” Successful empiricism in the field may 
trump poorly resolved laboratory models, as suggested by the dictum of Oscar Wilde 
that “Art is not to be taught in Academies. The real schools should be the streets.” 
In particular, there are several alternative methods to estimate the volume of shale 
(Vsh), which gives some latitude for interpretation. In addition, the value of the re-
sistivity of the shale component (Rsh) is questionable, because it is based on shales 
between the shaly sandstone units. The composition and morphology of clays within 
these external shales will probably be significantly different from clays within the 
shaly sandstones. However, as Worthington (1985) notes “disadvantages can be par-
tially compensated by using Rsh as a tuning parameter to improve predictive perform-
ance in the water zone in the expectation that better estimates of Sw will thereby be 
obtained in the hydrocarbon zone.”

Volumetric shaly sandstone equations continue to be widely used, but more 
realistic equations have been developed that reflect the physics of conductivity 
as a surface-area cation-exchange phenomenon. This second, and more recent, 
model is based on the ionic double-layer observed in shaly sandstones for which 
the classic equation is that of Waxman and Smits (1968), which is based on la-
boratory measurements.

In reality, the conductivity of the shale component is a function of the cation-exchange 
capacities of the various types and abundances of clay minerals that are present. Since 
the cations are exchanged primarily at broken bonds on the edges of flakes or by lattice 
substitutions on cleavage surfaces, the phenomenon tends to be surface-area depen-
dent rather than controlled simply by the volume of clay minerals. This implies that 
a fine-grained clay has a higher exchange capacity than a coarser grained form of the 
same clay volume, and this observation is confirmed by experimental data. Since all 
the shale indicators estimate (at best) the volume of the shale component, no explicit 
assessment is made of the grain size or clay-mineralogical variation.

Although these factors are widely known among log analysts, it is difficult to de-
sign log-analysis procedures to accommodate them, in the absence of a tool that mea-
sures cation-exchange capacity directly. Consequently, the model equations that use 
cation-exchange data have been modified to variants that substitute quantities that 
can be measured on logs as surrogate variables, such as that of Juhasz (1981), which 
is suggested to be a “normalized” representation of the Waxman-Smits equation.

DOUBLE-LAYER SHALY SANDSTONE MODELS

Waxman and Smits (1968) formulated the cation-exchange mechanism that causes 
clay conductivity in shaly sandstones as a double-layer model equation for the 
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solution of water saturation. As with other shaly sandstone models, it was built 
up from an Archie-equation base, but its terms are rooted in the causative phys-
ical phenomenon, rather than an empirical relationship. Other double-layer models 
were inspired by the theory of the Waxman-Smits formulation, but attempted to 
adapt the terms to quantities that could be measured directly from logs, because 
cation-exchange measurements from core samples are generally quite rare.

The Waxman-Smits model is based on laboratory observations of shaly sand-
stones. The resistivity behavior of shaly sandstones that are completely saturated 
with brine can be understood in terms of an Archie model modified by conductivity 
caused by cation exchange. If a clean sandstone was flooded with pure water, then 
both the conductivity of the water and the rock would be effectively zero. If the pore 
system was flooded with a sequence of successively more conductive brines, the con-
ductivity of the rock would decrease progressively. When crossplotted on a graph 
of Cw (brine conductivity) and Co (water-saturated rock conductivity), the points 
would form a straight line (Figure 1.8), whose slope is the reciprocal of the forma-
tion factor, because:
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which is the first Archie equation.
If this procedure was repeated with a shaly sandstone, rock conductivity would 

take a different trajectory (Figure 1.8). When the pore fluid was pure water, the 
conductivity of the rock would be zero, because there would be no ions in the water 
for exchange at clay-mineral surfaces, and therefore no conductivity effects. With 
a small increase in salinity, some (but not all) sites would be activated, and a clay 
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conductivity would be added to the conductivity caused by the ions in the pore space. 
As the salinity was increased further, there would come a point at which cation ex-
change was operating at full capacity, and beyond which no additional clay conduc-
tion effects would be added. The conductivity behavior of the water-saturated rock 
over a range of formation salinities would show a nonlinear increase at low-brine 
conductivities that would converge on a linear trend at higher conductivity and ap-
proximately parallel to the equivalent clean-sandstone line. The slope of the linear 
segment is, again, equal to the reciprocal of the formation factor, but this is the 
formation factor of both the open pore space and the clay-bound water and is sym-
bolized as F*. The Waxman-Smits model equations for water-saturated shaly sand-
stones are then:

C
F

C Co w e= +( )1
*

where Ce is the conductivity of the clay exchange ions and:

C B Qe v= ⋅

where B is the specific counterion activity (mho/m/equiv/liter) and Qv is the concen-
tration of exchange cations (meq/ml pore space).

So:
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In the case of a shaly sandstone that is partly saturated with hydrocarbon, the 
Waxman-Smits model expands in the equation development that follows.

Now:
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where Ct is the conductivity of the formation (the reciprocal of Rt) and n* is the sat-
uration exponent of the shaly sandstone.

So:
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The modification of the exchange cations concentration (Qv) occurs because the 
hydrocarbon phase concentrates the cations in a smaller volume of pore water.

Written in resistivity (rather than conductivity) terms, the Waxman-Smits shaly 
sandstone equation for water saturation becomes:
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In order to apply the Waxman-Smits equation, values of Qv are needed whose source 
are core measurements of the cation-exchange capacity (CEC) measured in units of 
meq/100 gm of sample:

Q
CEC

v
ma= ⋅ −( )⋅

⋅
1

100
Φ
Φ

ρ

Cores are generally taken from a limited sample of depths, so that some correl-
ation with conventional logs must be established in order to evaluate water satura-
tions over entire sections. Because of their sensitivity to clays, gamma-ray logs are an 
obvious choice as a surrogate measure of Qv, but it is not always possible to establish 
a useable relationship because a gamma-ray value will be an expression of volume, 
while cation exchange is controlled by surface area. Commonly, there will be a correl-
ation of Qv with porosity so that, for example, Lavers, Smits, and Van Baaren (1975) 
proposed the empirical relationship:

Q dv
e= −Φ

where d and e are constants to be evaluated from a set of Qv and porosity measure-
ments from the core.

Johnson and Linke (1977) made measurements of the cation-exchange cap-
acity from cores of Eocene sandstones in the Mackenzie Delta and were able to 
get a useful predictive relationship when related to gamma-ray values (Figure 1.9). 
They explained that the success of this relationship could be attributed to the radio-
activity of the high-CEC illite, but low radioactivity of the low-CEC kaolinite content. 
By using their relationship, an instructive comparison can be made between water 
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saturations calculated by the Archie, Simandoux, and Waxman-Smits equations in 
Imperial Oil Taglu G-33, which was the discovery well of the Mackenzie Delta Taglu 
field (Figure 1.10). As usual, the Archie equation overestimates water saturations in 
shaly zones by failing to accommodate the extra conductivity introduced by clays. 
In contrast, the Simandoux is characteristically overly optimistic on hydrocarbon 
saturation when related to the calibrated Waxman-Smits model prediction. All three 
models converge on the same water saturation estimates in shale-free zones, as the 
shale conductivity term is nullified, and the shaly sandstone equations become the 
Archie equation. Clearly, the Waxman-Smits model is the most credible prediction, 
not only because it is a better representation of the physics of the conductivity term, 
but because it is calibrated with respect to clays within the shaly sandstones rather 
than on the shale-log responses of the shales between the sandstones.
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Figure  1.10: Comparison of water saturations calculated by the Archie, Simandoux, and 
Waxman-Smits equations in Eocene sandstones of the discovery well of the Mackenzie Delta 
Taglu field.
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DUAL-WATER SHALY SANDSTONE MODELS

Core measurements of cation-exchange properties are not generally available, so 
that the derivation of these properties from the logs themselves would be preferable 
in most applications. These two considerations have inspired dual-water models that 
use the concepts of Waxman-Smits research work in coordination with properties 
that can be measured from the logs themselves. The most widely used variant is the 
“dual-water model” introduced by Clavier et al. (1977). As the name suggests, two 
kinds of water are postulated:  formation water in the granular pore system (both 
“free water” and capillary-bound water) and clay-bound water, whose salinity and 
resistivity are different. While the resistivity of the formation water is symbolized by 
Rw, the clay-bound water resistivity is written as Rb.

The conventional application of the dual-water model requires the use of the 
neutron and density porosity logs. In common with other shaly sandstone meth-
ods, the volume of shale, Vsh, is first calculated and then the effective porosity, Φe, is 
computed from the porosity logs by correcting the apparent porosity for the shale 
effect. At this point, the dual-water model diverges, because rather than consider-
ing the shale to be a single medium, it subdivides the shale into dry matrix and 
a clay-bound water component. The volume of the clay-bound water added to the 
effective porosity is the total porosity, Φt. For any individual zone, the volume of 
clay-bound water is determined by the volume of shale multiplied by the “porosity” 
of the shale, Φtsh.

The volumetric aspects of the dual-water model may be clarified from the exam-
ination of the schematic neutron-density porosity crossplot (Figure 1.11). The shaly 
sandstone system consists of three components: quartz, fluid, and shale (the gray tri-
angle). The quartz and fluid (mud filtrate) points are calibration points of the log; the 
shale point is chosen from “representative” shales in the section. In the dual-water 
model, the shale has a porosity of clay-bound water, and its value is a matter of local 
experience, but is computed from the equation:

Φ Φ Φtsh dsh nsh= ⋅ + −( )⋅δ δ1

where δ takes a value between 0.5 and 1 (Asquith, 1990). The delta term is simply 
a pragmatic weighting factor to create a value that seems reasonable for the 
bound-water content of the shale, Φtsh.

We now have a new composition triangle of quartz, fluid, and “dry shale,” where 
the fluid proportion contours are of total porosity, rather than the effective por-
osity contained within the triangle quartz-fluid-shale. Ideally, it would be pref-
erable to work within the more fundamental quartz-fluid-clay system, because 
our aim is to correct for clay-mineral conductivity effects within the shaly sand-
stone. Shale consists of clay minerals and a silt-size fraction of quartz and other 
(mostly) nonconductive minerals, so that the “wet clay” and “dry clay” points are 
located on lines that are extrapolations of the shale-quartz lines. Unfortunately, 
it is highly unusual to see a clay zone in a section and shales are generally what 
we observe. Even if theoretical corrections are applied to transform shale volumes 
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to hypothetical clay volumes, we have no data on the resistivity of the clay, but 
are restricted to observations of the resistivity of shale, Rsh. In fact, this is all part 
of a larger problem in that we are using the properties of “external shales” (be-
tween the shaly sandstones) to represent “internal shales and clays,” whose clay 
mineralogy and morphology may be radically different. Therefore, the external 
shale calibrators should be considered as initial model values that are selected 
to conform to shaly sandstone internal shales as closely as possible, but may be 
adjusted to give consistent solutions in the shaly sandstone. So, for example, a 
successful shaly sandstone model should generate values of water saturation close 
to 100 percent in fully water-saturated zones. If it does not, then the deviations 
can be used to fine-tune the model shale parameter values.

Once the total shale porosity value has been established, the total porosity of each 
zone can be calculated from:

Φ Φ Φt e tshVsh= + ⋅

and the clay-bound water saturation computed by:
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Figure  1.11: Schematic compositional system of the dual-water shaly sandstone analysis 
model on a neutron-density porosity crossplot.
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The bound-water resistivity is estimated by an Archie-style equation by combining 
the shale resistivity with the shale porosity:

R Rb sh tsh= ⋅Φ2

The dual-water model is a quadratic equation that can be solved for the total water 
saturation:
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which can be solved by:
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Finally, the water saturation in the effective pore space can be calculated from:

S
S S

Sw
wt b

b

=
−( )

−( )1

The results of an initial run of the dual-water model should be evaluated care-
fully, particularly with respect to zones considered to be fully water-saturated. If 
the results appear to be at variance with what is known from other information 
sources, then a revised computation can be made with adjusted model parameter 
values. If the shale volume, Vsh, estimates are considered to be reasonable, then 
the parameter values that may need to be adjusted are the resistivity of the shale, 
Rsh, and the total porosity of the shale, Φtsh, as revised inputs in a second (or third) 
iteration.

Clearly, the ideal shaly sandstone model has not been resolved nor ever will be. 
Each variant has its own history of success and failure with respect to different 
formations and a key consideration prior to any analysis is the distribution of con-
ductive clays within the shaly sandstone. Three endmembers are recognized: laminar 
shale, dispersed shale, and structural shale. Laminar shale consists of thin lamina-
tions of shale that separate stringers or beds of clean sandstone. Dispersed shale 
consists of pore-filling clay minerals, whose development leads to a progressive re-
duction in porosity. “Structural” describes sandstones in which some of the grains 
of the framework are shale fragments, diagenetically altered minerals, and other 
conductive grains. The Thomas and Stieber (1975) crossplot of shale volume versus 
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porosity provides a widely used method to discriminate between these shale mor-
phologies, which can be helpful both in the development of more complex models 
and the evaluation of operational results. However, this does not resolve the problem 
that the physics that underpins the volumetric shale-resistivity equations is unreal-
istic and the application of the ionic double-layer model is usually impractical.

Since none of these equations can possibly be “correct,” we should evaluate their 
success, or lack of it, by their predictive power. From a statistical point of view, we 
should choose the model that minimizes the error between the estimates of the 
water saturation and their true values. At the same time, model equations should be 
favored that are simple (but not simplistic), with few parameters to estimate, thereby 
minimizing error terms and error propagation. For practical formation evaluation, 
the general similarity in structure of the many alternative equations that have been 
published provides a framework for model solution from a utilitarian viewpoint. 
Simple models can be used in an optimization procedure, where the terms are cali-
brated from water zones within the shaly sandstone reservoir. The optimization pro-
cedure also maintains internal consistency, because all shaly sandstone equations 
contain the Archie equation as an explicit component and are therefore already com-
promised by empiricism!

Some discussion has already been made about sensitivity analysis of the Archie 
equation by error propagation calculations and Monte Carlo simulations. With 
the inclusion of more parameters, shaly sandstone equations introduce additional 
sources of error, and their evaluation can be useful in attempting to evaluate the role 
of input variables. At the very least, a range of water saturations is a useful expres-
sion of the confidence that is associated with any prediction, particularly when it is 
expressed in percentile probability bounds. Freedman and Ausburn (1985) consid-
ered error propagation within the Waxman-Smits equation, while Bowers and Fitz 
(2000) evaluated the sensitivity of parameters within the dual-water model. In both 
cases, while the set of parameters is larger than those of the Archie equation, the 
method of partial derivatives expands to accommodate the extra terms. Character-
izing the uncertainties associated with each parameter is particularly challenging, so 
that rather than presenting a clear-cut universal solution, the methodology should 
be considered as a toolbox for experimentation with individual reservoirs.

THE ARCHIE EQUATION IN CARBONATE ROCKS

Porosity in sandstones generally takes the form of intergranular pores between 
grains of quartz and other detrital minerals. Porosity in carbonate rocks (limestones 
and dolomites) can take a wide variety of forms because of the chemical nature of 
the framework that allows fracturing and dissolution at all scales, as well as compos-
itional changes. Petrophysicists generally subdivide carbonate pore types between 
interparticle, fracture, and vugs. Interparticle porosity is an inclusive term for either 
intergranular or intercrystalline pore systems and is often referred to as “matrix por-
osity.” Fracture porosity typically accounts for small pore volumes and so is difficult 
to differentiate by conventional log suites, although it plays a major role in fluid 
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mobility. Vuggy porosity is created by a variety of dissolution processes and occurs 
over a wide spectrum of scales, with the smallest pores larger than grain size and 
ranging up to caverns. An important property of vugs is the degree to which they are 
connected, because this aspect influences both electrical and fluid flow through the 
pore system.

In the simplest case, a carbonate is characterized by a single porosity system, in 
which case the texture is broadly similar to a sandstone with interconnected pores 
between carbonate crystals or grains. A dual-porosity system couples interparticle 
porosity either with fractures or vugs. Finally, a triple-porosity system contains all 
three types of pores: interparticle, fracture, and vug.

The most widely used form of the first Archie equation for both limestones and 
dolomites is the basic:

F = 1
2Φ

This choice is not intuitively obvious when contrasting the complex variability of 
carbonate pore types with the relatively simple pore structure of sandstones, whose 
porosity exponent takes a range of values. However, a porosity exponent value of 
two (m = 2) is a good choice for carbonate rocks, whose porosity is dominantly inter-
particle in nature, as shown by numerous core measurements and log evaluations 
(e.g. Focke and Munn, 1987).

In a dual-porosity system, the addition of either fractures or vugs causes changes 
in the formation factor that are reflected in the value of the porosity exponent. 
The volume of fracture porosity is typically very small, but provides additional con-
ductive pathways through the rock. In theory, a rock that was composed entirely of 
planar fractures oriented parallel to the current flow would provide a purely linear 
electrical circuit and an expectation of a porosity exponent of unity. Consequently, 
the porosity exponent of dual-porosity systems with fractures should take a value 
somewhere between 1 and 2 (Figure 1.12). In contrast, the addition of vugs to a 
carbonate commonly adds appreciable volume to porosity, but its effects on the for-
mation factor will vary according to the degree to which they are connected (adding 
conductivity) or unconnected (electrical dead space). Unconnected vugs do not con-
tribute to the conductivity, so that the porosity exponent takes values higher than 
two. While high values of m in sandstones are often considered to reflect increased 
tortuosity of the pore network, the higher porosity exponent in carbonates caused 
by nonconnected vugs is simply an expression of pore space that does not partici-
pate in the flow of electrical current through the rock. The uncorrelated pore space 
will contain both electrically connected pore space and “dead-end” pore space that is 
bypassed by electrical flow. An increase in “dead-end” pore space (nontouching vugs) 
is matched by an increase in m (Figure 1.12).

In carbonate lithologies with variable amounts of vugs or fractures, the value of 
m will clearly be variable, rather than constant. This problem has been recognized 
in adaptations of the basic Archie equation. So, for example, the great variability of 
pore geometry in the Niagaran (Silurian) pinnacle-reef belt of the Michigan basin 
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causes significant errors in water saturation calculations, if modeled with a cemen-
tation exponent of 2. Log analysts such as Labo (1977) used the relationship to ac-
commodate reef vugginess:

F = 1
2 5Φ .

which works reasonably well over the normal range of reef porosities. However, 
Bigelow (1992) pointed out that the poor performance of this equation in low- and 
high-porosity ranges caused unacceptable errors in reserve estimations and pro-
posed a “variable-m” modification which took the form:

F a b= +

1
Φ Φ( )

The equation was fitted empirically to core measurements of formation factor and 
porosity and makes m a simple function of porosity. As discussed earlier in this 
chapter, the structure of this equation is an improvement over the generalized 
Archie equation of:

F
a
m=

Φ

because the quantity a is simply a fitting parameter that holds the porosity exponent 
to an artificial constant, but the variable-m function produces values that can be 
related immediately to individual core-sample measurements.
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Figure 1.12: Schematic crossplot of formation factor versus porosity for carbonates with a sub-
division between fields dominated by interparticle, fracture, and vug pore systems.
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Porosity Partitioning in Dual-porosity Systems

If the porosity exponent is considered to take a value of two in carbonates with inter-
particle porosity, then the variability of m can be used to partition the porosity be-
tween different pore types. Several authors proposed independently some simple 
expansions to the Archie equation that incorporate either fracture porosity or vug 
porosity for two types of dual-porosity models. So, for example, Aguilera (1976) 
evaluated changes in the value of m in the interparticle-fracture system. Watfa and 
Nurmi (1987) derived equations for both dual-porosity systems and reported that 
the application of these equations gave estimates of water saturations in a variety 
of Middle Eastern carbonate reservoirs that were an improvement over the simple 
Archie equation with cementation exponent, m, equal to two. If planar fractures have 
an m value of unity and the matrix has intergranular and intercrystalline porosity 
with m = 2, then the apparent m of a fractured carbonate can be solved by consider-
ing the fractures and matrix as resistances in parallel. Then, the expansion of the 
Archie equation leads to the result:

Φ Φ Φm
f mx= + 2

where Φ is the total porosity made up of Φf, the fracture porosity, and Φmx, the 
“matrix porosity” (interparticle porosity). If the vugs are not connected, then elec-
trical current does not flow through them and they are nonconductive voids. As a 
consequence, the equation for this model is:

Φ Φ Φm
nc= −( )2

where Φnc is the vug porosity.
There is insufficient information to solve for both fractures and vugs using these 

equations. However, if the apparent m of the carbonate is clearly higher than two, 
then unconnected or poorly connected “vugs” (either molds or vugs) are suggested. 
In this case, the vug equation can be used to solve for vuggy porosity. If the apparent 
m value is markedly less than two, then fracture porosity may be suspected. The two 
equations are graphed as contours of fracture porosity and vug porosity on the loga-
rithmic chart of formation factor and porosity in Figure 1.13. The equations can be 
applied either to core measurements or downhole log evaluations of sections that are 
completely water-saturated, as demonstrated in the following examples.

Measurements of formation factor and porosity were made on core samples of 
the Permian Towanda limestone characterized either as unfossiliferous limestones 
or fossiliferous with the development of large dissolution molds. When the porosity 
exponent is calculated for each core and plotted against porosity (Figure 1.14), two 
distinctive electrical facies can be recognized immediately. Porosity exponents in the 
unfossiliferous limestones are matched closely by a value of two, as expected for an 
interparticle single-porosity system. In contrast, the limestones with fossil molds 
have higher porosities and a broad trend of increasing porosity exponent values that 
reflects the increase in the volume of unconnected pores. In a second example based 
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on cores, crossplots of formation factor versus porosity and porosity exponent, m, 
versus porosity are shown for Pennsylvanian Lansing “C” oomoldic limestones in 
Figure 1.15. Once again, alternative formulations of the Archie equation are pre-
sented that contrast the use of a as a fitting parameter and m as a mathematical 
artifact (left crossplot), with the variable m keyed to porosity (right crossplot). The 
variable-m trend offers some potential for the interpretation of the internal pore 
architecture of individual oolite bars, as discussed in the next example from the in-
terpretation of downhole measurements.

Amoco #6 James was drilled as a development well in the Victory Field of Kan-
sas with gas production from the Bethany Falls limestone. This Pennsylvanian 
limestone consists of a tight calcite wackestone deposited on an open shelf, which 
is succeeded by stacked oolite bars with high porosities from the dissolution of 
ooids and development of pervasive oomoldic porosity. A profile of the Bethany 
Falls limestone is shown in Figure 1.16 with a partition of the porosity between 
connected and unconnected pores (left) and computed porosity exponent, m 
(right). The subdivision between three successive bars (labeled informally as A, 
B, C) is obvious and matches outcrop observations of the Bethany Falls limestone 
to the east of the Victory Field (French and Watney, 1993). The anomalously high 
values of porosity exponent in the uppermost bar A are caused by gas saturations 
that increase the resistivity, as distinct from the lower bars, which are completely 
saturated with water. This well was perforated from 4,591 to 4,600 feet and gave 
an initial gas production of 380 MCF per day. A crossplot of porosity exponents, 
m, against porosity in bars B and C (Figure 1.17) show distinctive and separable 
trends. The bars in the outcrop are separated by unconformities, which have been 
interpreted as sequence boundaries, while the detailed examination of thin sec-
tions has revealed a complex history of dissolution, cementatation, and crushing 
with both improvement and decrease in pore connectivity (French and Watney, 
1993). The implied better connectivity and relative homogeneity of the oomoldic 
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versus porosity (right) for Pennsylvanian Lansing “C” oomoldic limestones matched with their 
alternative formulations of the Archie equation.
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limestones of Bar B are contrasted with those of the underlying Bar C, where the 
trend in porosity exponents is broader, and with values suggesting poorer con-
nectivity (Figure 1.17). Clearly, these explicit patterns are tied to the separable 
diagenetic histories of the two bars and are of potential use in supplementing more 
traditional geological methods in subsurface interpretation. Most importantly, 
they demonstrate once again that although the porosity exponent, m, is empirical 
and a crude descriptor of pore geometry, it can often be interpreted in terms of 
mechanisms of deposition and diagenesis.

At another extreme, it is common to observe anomalously low values of the por-
osity exponent in carbonates with low porosities. From extensive core measure-
ments, Focke and Munn (1987) observed that the porosity exponent in carbonates 
often shows a decline in value below 10 percent porosity, and becomes pronounced 
below 5 percent. This effect is shown clearly both in core measurements and in log 
analysis (Figure 1.18). In part, the effect reflects the increased sensitivity of small 
changes in porosity at these low levels, as can be seen on the plot of Figure 1.13. 
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Figure  1.16: Partition of the porosity between connected and unconnected pores (left) and 
computed porosity exponent, m (right), of stacked oolite bars in a Pennsylvanian Bethany Falls 
limestone section in a gas development well in the Victory Field, Kansas.
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However, the bias towards lower values of m even in nonfractured rock appears to 
show a systematic effect with another physical explanation. One interpretation 
was offered by Wardlaw (1976), who attributed the effect to a tendency of the 
shape of carbonate pores to become more sheetlike and the pore throats to be 
more uniform in size.
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Figure  1.17: Crossplot of porosity exponents, m, against porosity in bars B and C in a 
Pennsylvanian Bethany Falls limestone section in a gas development well in the Victory Field, 
Kansas.
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THE POROSITY EXPONENT IN A TRIPLE-POROSITY SYSTEM

Dual-porosity carbonates can be classified either as interparticle-fracture or 
connected-pore–unconnected-vug systems. A  pragmatic choice of the appropriate 
model is determined by whether the porosity exponent, m, takes a value of less than 
or greater than two. Clearly, there will be many instances where the carbonate pore 
system is triple in nature: interparticle, fracture, and unconnected vugs. The expan-
sion causes a significant increase in complexity, but Aguilera and Aguilera (2004) 
proposed a useful methodology that capitalizes on experience with dual-porosity 
carbonates. They modeled the triple-porosity system as a parallel resistance network 
for interparticle and fracture porosity, coupled with nonconnected vugs in series. 
This model then also accommodates situations where the pore system is dual in 
nature. The porosity exponent, m, of a triple-porosity system expressed in the for-
mulation of Aguilera and Aguilera (2004) is:

m
nc

nc

b
mb

=
− +

−( )
+ −( )









−log
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where φ is the total porosity, φb is the nonfracture porosity, ν is the fraction of the 
fracture porosity divided by the total porosity, νnc is the fraction of the nonconnected 
porosity divided by the total porosity, and mb is the porosity exponent of the pore 
space when no fractures are present. The equation involves several unknowns, but 
its application is helped considerably by the different morphology of the pore types. 
So, the effect of fractures on m is most pronounced at low porosities because they 
typically occupy minimal volumes. This contrasts with nonconnected vugs, whose 
origin in dissolution creates greater volume, and so their effects are noticeable in 
carbonates with higher porosities. The complexity of the equation should not blind 
us to the fact that this triple-porosity formulation is only a model, grounded in the 
empirical Archie equation and built from concepts of electrical flow in parallel and 
series networks. Its utility lies in whether it helps us to better understand the elec-
trical properties of carbonates and whether it can be applied to viable predictions in 
the subsurface. While older methods of log analysis were limited to the estimation 
of petrophysical unknowns by direct calculation, undetermined models of this kind 
can be the basis for forward modeling. This newer approach computes logs based on 
alternative reservoir models for comparison with actual log measurements and is 
easy to implement in today’s computer environment.

DIELECTRIC LOGGING MEASUREMENT OF THE  
POROSITY EXPONENT

Clearly, variable-m methods are fully appropriate for carbonate rocks with any pore 
complexity. However, up to this point, the prediction of the porosity exponent has 
been keyed to the porosity, either by a fitted relationship with total pore volume 
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or by porosity partitioning methods. As a first-order model, this is not unreason-
able because the addition of vuggy porosity will both increase pore volume and the 
anticipated value of m. However, the prediction will be based on a trend rather than 
a specific value for each zone. The direct and continuous estimation of the porosity 
exponent, m, by a logging-tool measurement would clearly be a major improvement 
over an indirect inference of its value. This is possible by means of dielectric logging. 
The electrical properties of rocks are completely defined by three properties: mag-
netic permeability, electrical conductivity, and dielectric permittivity. The magnetic 
permeability of most reservoir rocks is minimal, because of the paucity of magnetic 
minerals. Electrical conductivity, or its reciprocal, resistivity, has already been dis-
cussed extensively as to its role in both Archie and non-Archie rock formulations.  
Finally, the dielectric permittivity reflects the polarization of a material when 
exposed to an electrical field at a given frequency. The dielectric constant of water is 
considerably higher than that of other rock and pore components, and so its meas-
urement by dielectric logging gives the volume of water in the formation, with only 
minor effects due to salinity.

The operational principle of the dielectric tool is essentially the same as a micro-
wave oven, but where the microwaves travel through a subsurface formation and 
measurements are made of their attenuation and phase shift. The earlier tools were 
strongly affected by borehole rugosity, which discouraged their acceptance, but more 
recent developments by the logging industry have resulted in major improvements. 
The measurement investigation is shallow, so that its evaluation is within the flushed 
zone, where formation water has effectively been replaced by mud filtrate. Sherman 
(1983) confirmed experimental work by other investigators that the internal geom-
etry of the pore network has additional effects on the dielectric constant and sug-
gested that this could be used to predict the porosity exponent in dielectric logging 
through use of the depolarization factor. Consequently, m can be solved for each 
zone and then used in the evaluation of saturations in the uninvaded formation. The 
improvements in dielectric logging and the challenge of estimating the porosity ex-
ponent in vuggy carbonate formations have encouraged the use of this methodology 
as a more routine application (Seleznev et al., 2006).

PETROGRAPHIC EVALUATIONS OF THE POROSITY  
EXPONENT IN CARBONATES

The “meaning” of the porosity exponent in carbonates is more difficult to grasp than 
is the case for sandstones, which is complex in itself. Sandstones are assemblages of 
grains with an interparticle pore system whose basic control on m can be considered 
in terms of grain and pore shape, together with the tortuosity of the pore network. 
Of course, at a deeper level, aspects of pore-throat aspect ratios, pore coordination 
numbers, and other morphological descriptors need to be considered. As discussed 
earlier, the chemical nature of carbonates results in a more complex and heteroge-
neous pore architecture through dissolution, mineral transformation, and other dia-
genetic processes.
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Because carbonate reservoirs are so important worldwide, substantial efforts con-
tinue to be directed to laboratory studies of core samples with the aim of improving 
the understanding of pore networks and isolating key predictors that can be applied 
to the subsurface. In a recent study by Verwer et al. (2011), seventy-one carbonate 
core samples with textures ranging from wackestones to grainstones were evaluated 
by a variety of methods. Measurements of resistivity, porosity, and permeability 
were related to pore morphology parameters computed from digital image analysis 
of thin sections. Verwer et al. (ibid) considered the relationship between the porosity 
exponent and the pore perimeter/area ratio and the dominant pore size. The pore 
perimeter/area ratio is the two-dimensional equivalent of the specific surface area, 
with smaller values suggesting a simple pore geometry and larger values indicating 
an intricate pore system. Crossplots of these two measures with porosity exponents 
(Figure 1.19) show distinctive trends that can be interpreted. Lower values of the 
porosity exponent are associated with small pores in a complex pore structure, while 
high values are linked with larger pores in simple pore structures. Additionally, an 
increase in the number of pores and pore connections, rather than the size of the 
pore throats, appeared to have a major influence on lowering the porosity exponent.

THE SATURATION EXPONENT, N

As mentioned at the beginning of this chapter, Archie (1942) proposed a second 
Archie equation to describe the resistivity of formations partially saturated with 
hydrocarbons, which took the form:
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where Rt is the resistivity of the sample at Sw, which is the fractional water satur-
ation, Ro is the resistivity of the completely water-saturated sample, and n is the 
saturation exponent. Although a considerable body of research has been devoted to 
the first Archie equation as applied to rocks that are completely saturated with brine, 
until recently, less work has been directed to the consideration of the saturation ex-
ponent, n, which controls the resistivity index—water-saturation relationship. In 
part, this discrepancy reflects the extra difficulties involved in both measurement 
and evaluation. Core estimations are based typically on a crossplot of the resistivity 
index measured over a range of water saturations, where the saturation exponent is 
determined by the slope (Figure 1.20).

Archie’s original suggestion (Archie, 1942) that n takes an approximate value of 
two is still widely accepted as a viable default value, and it is not unreasonable for 
water-wet rocks. Adisoemarta et al. (2001) considered this value to be a represen-
tative number for laboratory measurements, but argued from a theoretical deriv-
ation that the exponent should actually be equal to one. They attribute the difference 
between theory and practice to the pore structure of bodies and throats, where 
the resistivity is controlled by pore-throat constrictions, but is used to predict the 
proportion of the water within the pore body. From this perspective, a saturation 
exponent of greater than unity is the necessary adjustment to scale a pore-throat 
cross-sectional area parameter to a pore-body volumetric.

As an example of laboratory measurements, saturation exponents from core 
samples of the Permian Towanda limestone are plotted against porosity exponents, 
in Figure 1.21. These are the same cores of unfossiliferous and vuggy, fossiliferous 
limestones for which the porosity exponents were plotted in Figure 1.14. Notice that 
the marked and systematic change in the porosity exponent with porosity does not 
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Figure  1.20: Example of the determination of the saturation exponent in an Arbuckle 
limestone core sample from the slope of the trend of resistivity index and water-saturation 
measurements.
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appear to be matched with major differences in the range of saturation exponent 
values. However, there is a distinctive shift to higher values in the moldic pores, as 
compared to the interparticle porosity of the unfossiliferous limestones, and this 
could be interpreted in terms of pore-throat area to pore body ratios.

Laboratory measurements most commonly report a single value for the satur-
ation exponent, which perpetuates the commonly held belief that it is always a 
constant. However, when the saturation exponent is evaluated in conjunction with 
capillary pressure measurements, then distinctive changes are often seen in the 
slope of the resistivity index—water saturation crossplot. The changes in slope, and 
so also the saturation exponent, are observed to occur at points that correspond 
to distinctive pore-throat sizes. Consequently, because the mechanism of oil em-
placement within pores is controlled by capillary forces, the saturation exponent 
may vary with the height within the reservoir. At greater heights, the lowering of 
water saturation represents the progressive breaching of successively smaller pore 
throats, so that at partial saturations, larger pores contain oil, while smaller pores 
remain fully water saturated. If the pores are effectively filled by oil, such that the 
residual water saturation makes a minimal contribution to conductivity, then all 
the electrical current is carried preferentially by smaller pores. These conclusions 
have been supported by a number of laboratory studies of core resistivity and capil-
lary pressure. So, for example, Swanson (1985) made simultaneous measurements 
of capillary pressure and electrical resistivity in sandstone samples. He observed a 
subdivision between macropores and micropores that was reflected in a change in 
the slope of the resistivity index and was commonly caused by the occurrence of 
microporous chert.
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Figure  1.21: Crossplot of saturation exponents versus porosity exponents measured from 
core samples of the Permian Towanda limestone. Values for unfossiliferous limestones are con-
trasted with vuggy, fossiliferous limestones, and both referenced to the general expectation 
that m = n = 2.
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Brown (1999) proposed a “binary Archie model” (BAM) to fit resistivity-index–
water-saturation trends where a distinctive break in slope suggested a separable 
micropore-macropore system. The equations of the BAM can be used to solve both 
the porosity exponent and saturation exponent values of the macropores and micro-
pores. The binary expansion of the second Archie equation can be written as:

I
R
R

Co V Co V
Ct V Ct V

t

o

mic mic mac mic

mic mic mac mic

= = + −
+ −

( )
( )

1
1

where:

C Co w
m= ⋅Φ  and C C St w

m
w
n= ⋅ ⋅Φ

are the conductivity terms applied to each component and Vmic is the proportion of 
microporosity. Notice that the m and n values for the micropores and macropores in 
the conductivity terms will be different and can be solved by a least-squares nonlin-
ear optimized fit to the resistivity index—water-saturation measurements. Brown 
(1999) provided an example of the binary Archie model applied to the Iveshak for-
mation of Prudhoe Bay. McCoy and Grieves (1997) reported that the saturation ex-
ponent was found to change with height above the oil-water contact from the effect 
of microporous chert in the Iveshak. By applying the BAM model to the Iveshak re-
sistivity index—water-saturation trend, Brown (1999) concluded that the Archie 
exponents for the sandstone macropores were m = 1.30 and n = 1.49, and those for 
the microporous chert were m = 1.98 and n = 1.53.

In using these insights for improved reservoir analysis, it is clear that the height 
of the hydrocarbon column in the reservoir coupled with pore-size distribution are 
the major considerations. Conventional analysis with Archie-equation exponents set 
as constants will often be sufficient to characterize limited sections and also lon-
ger columns with unimodal pore distributions. Large reservoirs with heterogeneous 
pore distributions may show distinctive changes in Archie exponents with height, 
but the effects can be evaluated from core analysis of capillary pressure and resist-
ivity. These issues will apply to both clastic and carbonate reservoirs, but may prove 
to be of relatively minor concern if wettability is a factor, as discussed in the next 
section.

WETTABILITY EFFECTS ON THE SATURATION EXPONENT

Wettability was not generally thought to be a significant issue when Archie’s pio-
neering paper was published in 1942. At that time, reservoirs were considered 
to have been formed from aquifers in which the wetting agent continued to be 
water, as hydrocarbons accumulated in the center of pore bodies. Once oil wet-
tability was demonstrated in many reservoirs, its impact on the Archie equation 
was immediately recognized in its potential effect on the saturation exponent, 
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n. One of the defining characteristics of an Archie rock is that its water phase 
should provide a continuous conductive path through the rock. In a water-wet 
situation, even at low saturations, the immobile water maintains a continuous 
film at grain surfaces for conduction. In an oil-wet situation, formation water 
becomes trapped in isolated globules and filaments that do not contribute to 
electrical flow, thereby creating a non-Archie rock. Because the formation re-
sistivity is increased substantially, viable predictions of water saturation from 
the Archie equation would require unreasonably high and erratic values for the 
saturation exponent.

Rather than water-wet and oil-wet situations being discrete alternatives, they 
actually form endmembers of the range of wettability, with intermediate types 
variously known as Dalmatian, fractional, or mixed wetting. The degree to which a 
formation can be considered to be an Archie rock can be gauged by the departure of 
the saturation exponent values from their expectations under water-wet conditions, 
typically a value of approximately two. Two aspects need to be considered: the pro-
portion of the grain surface that is oil wet and the water saturation of the pore space. 
Morgan and Pirson (1964) measured saturation exponents on cores with different 
partial wettabilities and found that the values stayed fairly constant and consistent 
with water-wet expectations when oil wettability was less than 40 percent. However, 
at higher oil wettabilities, the saturation exponent increased rapidly to extremely 
high values. With regard to the relationship with water saturation, Anderson (1986) 
summarized the conclusions of several experimentalists who were in fundamental 
agreement that under oil-wet conditions, the saturation exponent maintained es-
sentially its water-wet expectation at water saturations exceeding about 35 percent. 
Below this value, there was a substantial increase in the saturation exponent, and 
microscopic observations showed the water phase to be increasingly isolated within 
the pore space.

In summary, Archie rock appears to be sufficiently robust to tolerate a certain 
degree of oil wettability, as indicated by experimental work with cores. However, in 
contrast to laboratory work, serious effects can often be seen from field analyses, 
particularly in reservoirs with high capillary pressures associated with long oil col-
umns and carbonates whose surfaces often show a greater susceptibility to chemical 
reactions from humic acids than to clastics. Wettability may change as a function of 
height within the oil column, so that water-wet conditions can be expected to prevail 
at the base of the transition zone, but with a potential for increasing oil wettability 
above the transition zone. Fortunately, recent advances in logging technology can be 
brought to bear on the problem, particularly as the degree of wettability often varies 
zone by zone within a reservoir. So, for example, differences in the surface relaxivity 
of water and oil can be evaluated by magnetic resonance image logs and used to cal-
culate a wettability index (Looyestijn, 2007).

In addition, because of its sensitivity to the water volume, dielectric logging 
has been linked with conductivity measurements in a connectivity equation that 
accommodates oil wettability effects and converges on the Archie equation under 
water-wet conditions (Montaron, 2007).
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ARCHIE REDUX

Over seventy years have passed since Archie published his equations that have 
been the basis for water-saturation estimations ever since. In the twenty-first 
century, the debate concerning the meaning and viability of the equations con-
tinues in the pages of respected scholarly journals, and a variety of alternatives 
continues to be offered. One motivation is an instinctive dislike for empirical 
equations, and instead, there is a quest for true meaning that can be explained 
in terms of the fundamental physics of electrical flow. Another motivation is the 
increasing importance of hydrocarbon reservoirs that would have been dismissed 
as noncommercial until recently, and commonly occur in “non-Archie rocks.” New 
models with proven predictive power for these challenging rock types would be 
welcomed, particularly if they were rooted in comprehensible physical theory ra-
ther than raw empiricism.

Kennedy and Herrick (2012) pointed out that the Archie equations were products 
of their time. Before computers, or even hand calculators, data analysis was driven 
by graph paper, and data was plotted on linear, semilogarithmic, or logarithmic axes. 
Even with these limitations, Archie had some choices available to him and elected 
to use a power law based on resistivity, rather than functions of conductivity, which 
are generally favored by his detractors. He probably chose to work with resistivity 
so that useful results could be applied immediately to the resistivity logs of his day. 
However, physicists tend to think in terms of electrical efficiency and focus on the 
conductive aspects of the medium.

Although conductivity is the reciprocal of resistivity, rewriting the formula-
tion of the electrical properties of porous rocks gives potential new insights into 
the nature of the controlling parameters. The formation conductivity factor, G is 
given by:

G o

w

= σ
σ

which is the reciprocal of the formation resistivity factor, and where ρw and ρo are 
the conductivities of the pore water and the water-filled rock, respectively. The con-
ductivity factor is most commonly related to porosity through a consideration of the 
connectivity of the pores using percolation theory, following the seminal work of 
Kirkpatrick (1973). For any porous medium, there will be a minimum critical por-
osity at which there are no connections between the pores and therefore no conduct-
ivity. This critical value is the percolation threshold porosity. A simple model of a 
reservoir can be constructed from a cubic lattice of cells in which all the cells initially 
are solid, and the pore cells are then added progressively and randomly. It is not until 
a porosity of 0.3116 is reached that a conductive path can be established through 
the cubic lattice. Clearly this high value marks one small step towards a useful res-
ervoir model, because the connection of each cell with adjacent cells is limited to six 
cube faces. When additional connections are allowed at the cell corners, edges, and 
sides, then the threshold percolation porosity drops to about 0.1 (Montaron, 2009). 
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Real rocks have considerably lower thresholds, and measurable conductivity is main-
tained at very small pore volumes. So, for example, Bourbie and Zinszner (1985) 
estimated the threshold percolation porosity of the Fontainbleau sandstone to be 
0.025. The Fontainebleau sandstone is widely recognized as the archtypical Archie 
rock, so that this estimate could be considered to be a default value.

The conductivity formation factor can then be related to porosity with the equa-
tion:

G pt

pt

q

=
−
−













ϕ ϕ
ϕ1

where ϕpt is threshold percolation porosity and q is an exponent whose value is typ-
ically taken to be close to two. With a percolation threshold porosity of zero, this 
expression becomes the first Archie equation, rewritten in terms of conductivity.

The resistivity index, I, can also be interpreted in terms of connectivity, by apply-
ing a “water connectivity index,” Χw in a model proposed by Montaron (2009):
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and Sc represents the critical water saturation. When the water connectivity index is 
zero and μ takes a value of two, then the formula becomes the second Archie equa-
tion. However, the second Archie equation assumes a constant value for the sat-
uration exponent, whereas the introduction of the water connectivity index with 
nonzero values creates a variable slope when the resistivity index is plotted against 
water saturation. With positive values of the water conductivity index, the resistivity 
index takes on progressively higher values at lower water saturations, which emu-
lates oil-wet rocks in this lower range. The physical interpretation of these models 
then recasts resistivity concepts of tortuosity, length, and area into the degree of 
connectedness of the conductive water within the reservoir pore space.

As a power law, the Archie equation might be a natural candidate for character-
ization by some kind of fractal model because the self-similarity functions of frac-
tals are created by power laws keyed to size. Roy and Tarafdur (1997) demonstrated 
how the Archie equation can be created from a fractal model, but they cautioned 
that this relationship will only hold true provided that the size of the pores are also 
fractal. Detailed work by Krohn (1988) determined that the distributions of pore 
volumes in sandstones were subdivided between a fractal short-length regime and a 
Euclidean (nonfractal) long-length regime. She attributed the nonfractal behavior to 
a reflection of the original sandstone porosity, as contrasted with fractal behavior at 
smaller scales, caused by diagenesis, which could be fitted by power laws of scale. The 
creation of pore space within carbonates is generally the result of a more complex 
mix of processes that modify the pore architecture over a wide range of scales. How-
ever, the application of fractal models to carbonate reservoirs appears to be gaining 
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ground from a time when they were considered to be a novelty with little practical 
application. Montaron (2005) concluded that each of the carbonate pore systems of 
interparticle, vugs, and fractures could be independently and successfully modeled 
by fractal distributions. Their characterization by fractals would be especially useful, 
because the daunting complexity of some carbonate pore systems could be described 
by power laws with relatively few parameters.

In spite of these newer developments, the Archie equation continues to be used 
successfully in conventional reservoirs on a daily basis. Critics of the Archie equation 
concede that the necessary textural information must indeed be contained within 
the porosity exponent, m, and the saturation exponent, n. Their complaint that the 
physical meaning of the exponents is obscured in the formulation is probably of less 
importance to the geologist than the physicist. Rocks are complicated. Facies that are 
differentiated by changes in m can take their place with geological facies defined by a 
host of qualitative criteria. Meanwhile, engineers can be satisfied by equations that 
are fit for purpose and deliver results at an acceptable level of accuracy. In the end, 
perhaps we can all agree with the widely quoted aphorism of the statistician, George 
Box, “All models are wrong; some models are useful.”
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CHAPTER 2

Porosity Volumetrics and Pore Typing

POROSITY OF SPHERICAL PACKS

The primary objective of porosity estimations based on measurements made either 
from petrophysical logs or core is the volume of pore space within the rock, given 
simply by the equation:

Φ =
V

V
p

b

The Greek letter, phi, is the standard symbol for porosity and is expressed in this 
equation as the ratio of the volume of void space (Vp) to the bulk volume of the rock 
(Vb). The simplest concepts of porosity are generally explained in terms of the packing 
of spheres as the sum of the pore volume of the space between the spheres. There 
are five basic arrangements of uniform-sized spheres that can be constructed: simple 
cubic, orthorhombic, double-nested, face-centered cubic, and rhombohedral packing 
(Hook, 2003). Each has a geometrically defined pore volume that represents an 
upper limit for granular rocks whose constituent grains have a variety of sizes and 
shapes and whose pore volumes have been reduced by compaction and diagenetic 
cements. This intergranular model is a useful starting point for the characterization 
of pores in clastic rocks and will be considered first, before reviewing the additional 
complexities of pore geometry introduced by dissolution in carbonate rocks.

CLASTIC “EFFECTIVE” POROSITY

The solid framework of a sandstone consists of a nonconductive “matrix” dominated 
by quartz, but commonly with accessory nonconductive minerals, and conductive 
clay minerals, whose electrical properties are caused by cation exchange with ions 
in saline formation water. It is important to distinguish between connected and un-
connected pores, as well as larger pores that sustain fluid movement in contrast to 
smaller pores filled with capillary-bound water. A graphic presentation of these com-
ponents (Figure 2.1) is widely used in the petrophysical literature as a reference basis 
to disentangle terminology that can be confusing and contradictory. In particular, 
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the term “effective porosity” has different meanings that vary from one technical 
discipline to another. In their review of porosity terms, Wu and Berg (2003) con-
cluded that many core analysts considered all porosity to be effective, log analysts 
excluded clay-bound water, while petroleum engineers excluded both clay-bound 
and capillary-bound from porosity consideration, thereby restricting effective por-
osity to pores occupied by mobile fluids. The increasing use of magnetic resonance 
logging has helped considerably to bridge this cognition gap through its ability to 
partition pore space between mobile and immobile fluids. Essentially it gives the 
petrophysicist the means to deliver what the petroleum engineer needs. However, 
when limited to porosity measurements from more traditional logging tools, the 
petrophysicist can only correct total porosity for clay-bound water and offer this as a 
shale-corrected “effective porosity.”

Estimates of total porosity from borehole measurements are based most com-
monly on density, neutron, or sonic logs. These “porosity logs” must be scaled with 
reference to a specific lithology and pore fluid. The shallow depth of investigation 
by these tools generally restricts their measurement to the flushed zone, so the de-
fault pore fluid is mud filtrate. The conventional choices for the reservoir reference 
mineral are either calcite, quartz, or dolomite to represent zero porosity points for 
limestone, sandstone, and dolomite formations. Because of changes in lithology 
over logged sections, it is a standard practice to run them in combination so that 
variations in rock composition can be factored out by overlays or crossplots. Nu-
clear magnetic resonance (NMR) logs are also used to estimate porosity, but the 
measurement is free of lithology effects. The spectrum of NMR relaxation times 
partitions total porosity between clay-bound water, capillary-bound water, and free 
fluids (Figure 2.1). Consequently, effective porosity, as defined either by log ana-
lysts or petroleum engineers, can be evaluated explicitly.

NEUTRON-DENSITY SHALE VOLUMETRICS

In most situations, an NMR log is not available, in which case a combination of density 
and neutron logs is the best choice to evaluate porosity in clastic units. When refer-
enced to a neutron-density crossplot (Figure 2.2), log readings of clastic zones can 
be located within a ternary system whose vertices are quartz, shale, and pore fluid. 
The “fluid point” corresponds to mud filtrate water because the shallow depth of 
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Figure 2.1: Descriptive model for the partitioning of a reservoir rock into its volumetric com-
ponents. Effective and total porosities are marked as conventionally defined by petrophysicists.
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investigation by these tools limits most of their response to the flushed zone. There are 
generally minimal perturbing effects by residual oil, because the density and hydrogen 
index of most oils are fairly similar to water. However, gas effects in shallow invasion 
zones are immediately recognized by points that plot outside the ternary composition 
space. Because shale properties are dictated not only by rock composition but also by 
their degree of compaction, the location of the “shale point” is empirical and must be 
based on representative shales in the section. As discussed in the first chapter, this 
shale point represents “external shales” between the sandstone units. Hopefully, these 
external shales will have a similar composition to shale laminae within the sandstones 
(“laminar shale”), but the neutron and density properties of the clays within the sand-
stone pores (“dispersed shale”) may differ significantly. Once the ternary composition 
system is specified, contours of effective porosity in the traditional log-analysis sense 
are defined (Figure 2.2) and values are computed from the equation:

Φ
Φ Φ Φ Φ

e
n d

sh
nsh dshV=

+( )
+ ∗

+( )
2 2

This effective porosity contains both free fluids and capillary-bound water, and so is 
greater than the value of effective porosity considered by most petroleum engineers 
as the porosity containing mobile fluids.

In addition to porosity, the ternary system provides estimates of shale content in 
contours that parallel the sandstone line (Figure 2.2) and are given by the equation:
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Figure  2.2: Shaly sandstone system on neutron-density porosity crossplot with vectors of  
effective porosity ( Φe) and shale volume (Vsh).
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This is only one of several methods to estimate Vsh, and it is common practice to 
calculate a number of Vsh estimates, particularly if there is no petrophysical reason 
to favor one over another. The neutron-density estimate can be badly compromised 
in shaly sandstones that contain gas. Although strong gas effects are immediately 
recognizable when they plot outside the composition space, shale contents may 
mask smaller gas effects. Typically this results in an erratic profile of shale volume 
estimates caused by variability in flushed-zone gas saturation. Also, differences be-
tween shales within a sandstone and external shales may cause additional problems. 
If there are erroneous estimations of shale content, then effective porosity is also in 
error, so that Vsh values are a contributory factor in the porosity evaluation of clastic 
units. The most commonly used alternative method for volumetric shale estimation 
uses the gamma-ray log and is reviewed in the next section.

GAMMA-RAY ESTIMATIONS OF SHALE VOLUME

In most stratigraphic and petroleum geological applications, the gamma-ray log 
is used primarily as a “shale log,” both to discriminate shales from “clean” forma-
tions and to estimate the proportion of shale in shaly reservoir units. Gamma 
rays counted by the logging tool from subsurface formations are emitted by radio-
active isotopes in the decay families of thorium and uranium together with the 
potassium-40 isotope. The higher levels of radiation in shale are caused by thorium 
and potassium associated with clay minerals as well as uranium fixed by phos-
phatic or organic material. Older tools were recorded in “counts” or as equivalent 
weights of radium per ton, but all modern logs are scaled in terms of the American 
Petroleum Institute (API) gamma-ray unit. The API test pit at the University of 
Houston uses a concrete calibration standard that has a value of 200 API units, 
thought to be about double the gamma-ray emission of an “average” midcontinent 
shale (Belknap et al., 1959).

Expectations of the API unit log reading of a shale can be approximately recon-
structed from the elemental abundances by applying multipliers of eight to the U 
(ppm), four to the Th (ppm), and sixteen to the K (%) estimates and summing their 
contributions (Luthi, 2001). This relationship provides a useful method to relate 
subsurface gamma-ray logging values of shale with samples from outcrop and core, 
based on laboratory geochemical measurements. Analyses of the North American 
shale composite (NASC) reference standard (Gromet et al., 1984) reported values of 
Th 12.3 ppm, U 2.66 ppm, K 3.2 percent, which converts to an equivalent gamma-ray 
log reading of 121.7 API units. Although higher than the vague assertion that a typ-
ical midcontinent shale should read about 100 API units, the hypothetical log value 
of the NASC standard is a good match with the actual values of gray shales logged in 
most midcontinent Pennsylvanian successions (Doveton, 1994).

The measurement scale of API units may be transformed into a volumetric esti-
mate of shale proportion, Vsh, by interpolating between a minimum value, C, thought 
to represent zero shale and a maximum value, S, considered to be a typical gray shale. 
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This interpolation is expressed by the gamma-ray index (GRI) equation for a zone 
whose gamma-ray value is G:

V
G C
S Csh = −( )

−( )

which attributes a linear relation between shale content and gamma radiation as a 
volumetric measure. Strictly speaking, the conversion to a proportion of radioactive 
material is by weight, but the volumetric estimation is a reasonable approximation 
because of the relatively minor differences in density within sandstones and shales. 
A more important consideration is that the equation attributes all sources of radio-
activity to the shale component, but additional sources such as heavy minerals and 
potassium feldspar can be significant contributors. Finally, uranium sources have 
little relation to shale content, so that computed spectral gamma-ray logs that sum 
only potassium and thorium sources are commonly preferred for shale evaluation.

For these reasons, the shale proportions calculated from the linear interpolation 
equation may be overestimates, and this bias is recognized in many field studies. Re-
medial corrections can be attempted by using one of several nonlinear relationships 
that modify the linear estimate calculated by the “gamma-ray index” (GRI) to lower 
values. Two alternative equations for “Tertiary rocks”:

Vsh
GRI= ∗ −( )∗( )0 083 2 13 7058. .

and for “older rocks”:

Vsh
GRI= ∗ −( )0 33 2 1.

were proposed by Larionov (1969), based on laboratory calibration of clay volumes 
from X-ray diffraction with gamma-ray values. The Larionov equations are still widely 
used, although their application encourages the notion that the volume of clay (Vcl) 
is equivalent to the volume of shale (Vsh). However, Yaalon (1962) reported that the 
average shale contains approximately 60 percent clay minerals, and this figure is sup-
ported by Bhuyan and Passey (1994), who suggested that if clay volume was the 
issue, then the simple relationship of:

V Vcl sh= ⋅∗0 6.

was adequate and provided a reasonable fit to the Larionov predictions in the 
low-clay/shale range.

In contrast with these complex equations, Stieber (1970) used the simple formu-
lation of:

V
GRI
GRIsh =

∗
+ ∗( )
3

1 2

which he derived as a minimum-error fit to calculated pulsed-neutron sigma values 
of shaly sandstones in the Louisiana Gulf Coast. The precision that is implied by the 
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terms and intricacy of the Larionov equations can be misleading when applied to 
most shale evaluations, so that the simple and pragmatic family of variants of the 
Stieber equations:

V
GRI

GRI c GRI
sh =

+ ∗ −( ) 1

is a popular nonlinear alternative, where c takes the value of either 1, 2, or 3. Inter-
estingly, the alternative integer choices of the parameter c results in an emulation of 
the Larionov equations for “older rocks” (c = 2) and “Tertiary rocks” (c = 3) to a fair 
degree, while a value of c = 1 equates Vsh with the gamma ray index (GRI) (Figure 2.3).

In general, log practitioners such as Asquith and Krygowski (2004) recommend 
the use of the linear GRI estimate of shale as the model of first choice, but, if field evi-
dence suggests the values to be overestimates, then a nonlinear model may be used 
to improve the estimation. As Ellis and Singer (2007) comment wryly, the estimation 
technique “attempts to determine too much from too little information.” However, 
with that said, bad decisions on the choice of shale volumetric estimation will have 
distinctive consequences in poor estimations of effective porosity, water saturation, 
and other reservoir parameters. Of particular concern is that the coarse resolution of 
conventional logging tools causes thin beds and laminae of shale within sandstones 
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to be averaged as shale content in what might appear to be a uniformly shaly sand-
stone, but are actually interbedded shale and sandstone layers. Consequently, feed-
back from reservoir models is necessary to either validate or provide guidance for 
corrective modifications to the shale estimation procedure. This will be discussed 
later when considering the distinctions between “dispersed shale” (clay) and “lam-
inar shale” (shale) within shaly sandstones.

CORRECTION OF TOTAL POROSITY FOR SHALE CONTENTS

Estimating the volume of shale content is an important factor in evaluating hydro-
carbon saturation because of clay-mineral conductivity effects, as discussed in 
the previous chapter. In addition, shale volumes also determine the reduction in 
total porosity estimated from logs to an effective porosity, equated here with both 
capillary-bound water and pores with mobile fluids. The response of the density log 
is a mass-balance relationship, so for a clean sandstone the porosity is given by:

ρ ρ ρb f ma= ⋅ + −( )⋅Φ Φ1

where ρb is the bulk density, ρma is the matrix density, ρf is the pore fluid density and 
Φ is the porosity. The solution is an estimate of the total porosity, which is equiva-
lent to the effective porosity because there is no perturbation by shale content. With 
shale content, the equation expands to:

ρ ρ ρ ρb f sh sh sh maV V= ⋅ + ⋅ + − −( )⋅⋅Φ Φ1

where Vsh is the volume of shale and ρsh is the density of the shale component.
A common alternative and simpler equation corrects the total porosity, Φt, to the 

effective porosity, Φe by:

Φ Φ Φe t sh dshV= − ⋅

where Φdsh is the density porosity reading of the shale component.
If both neutron and density porosity logs are available, then the effective porosity 

is computed from the relationship:

Φ
Φ Φ Φ Φ

e
n d

sh
nsh dshV=

+( ) + ∗
+( )

2 2

In these equations, the pore fluid is assumed to be mud filtrate water because the 
shallow depths of investigation of both the density and neutron tools means their 
responses are primarily drawn from the flushed zone. However, the possible pres-
ence of gas close to the borehole wall must be included in the formulation. The equa-
tion commonly applied to estimate the porosity with a compensation for gas takes 
the form:
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Φ
Φ Φ

=
+( )n d

2 2

2

The equation closely approximates the formula derived by Gaymard and Poupon 
(1968) from a petrophysical model of a gas-filled reservoir. An alternative and em-
pirical equation that is also widely used is a simple weighted average of the neutron 
and density porosities, with a weighting of one-third applied to the neutron porosity 
and a weighting of two-thirds weighting applied to the density porosity (Asquith 
and Krygowski, 2004). This empirical equation closely emulates the gas correction 
vector shown on service company neutron-density crossplots. It also seems a good 
approximation to field observations, as suggested by the regression analysis of core 
porosities related to neutron and density fractional log porosities from limestones 
in the Chase Group of the Hugoton gas field (Dubois et al., 2006) which resulted in 
the equation:

Φ Φ Φ= +0 62 0 39. .d n

An important consideration in the estimation of effective porosity is whether 
the shaly content of the sandstone is dominated by either “dispersed shale” or 
“laminar shale.” In the case of dispersed shale, clay content progressively occludes 
porosity as clay minerals develop on pore walls, so that the addition of clay results 
in a complementary reduction in porosity. However, if the shale content forms 
discrete laminae that separate layers of clean sandstone, then the effective por-
osity is averaged by the logging tool and appears as a low aggregate value, rather 
than layers of sandstone with potentially high effective porosities interbedded 
with shales.

ALLOCATION BETWEEN SHALE MORPHOLOGY TYPES

Geologists regard the shale content in sandstones to be distributed in forms that re-
flect their genesis as either autochthonous or allochthonous material. Autochthonous 
clays are developed in place, lining and filling pores and as diagenetic replacements 
for minerals such as feldspars. Allocthonous clays are introduced during sedimenta-
tion as components of rip-up mudstone clasts, biogenic pellets, burrows, and shale 
laminae. Wilson and Pittman (1977) applied this bipartite classification in a study of 
a large sandstone data set and found that the majority contained either authigenic 
or allogenic clays.

Petrophysicists have traditionally distinguished three types of shale as distinctive 
descriptors of the manner in which clay material is distributed within a shaly sand-
stone. They are:

(1)  Laminar shale, which consists of thin laminations of shale that separate layers 
of clean sandstone. The occurrence of these laminations is not accompanied by 
a reduction in the porosities of the sandstone layers themselves, but there is 
an overall reduction in the bulk porosity of the total rock.
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(2)  Structural shale, which describes sandstones in which some of the grains of the 
framework are shale fragments or diagenetically altered minerals. The tran-
sition from a clean sandstone is not necessarily matched by any reduction in 
porosity.

(3)  Dispersed shale, which consists of pore-filling clay minerals whose development 
has caused a progressive reduction in porosity.

So, the basis for description by petrophysicists is morphology, that is, the geo-
metrical manner in which the shale is distributed through the sandstone. The three 
shale types are endmembers that encompass the spectrum of mixtures within shaly 
sandstones.

The three-shale-type system is commonly interpreted from a Thomas-Stieber 
plot of logs of sandstone-scaled density porosity and gamma rays (Figure 2.4). 
The line linking the clean sandstone point with a total shale point marks the 
trend of laminar shale and is the baseline for subdivision between shale types. The 
Thomas-Stieber model provides estimates of the volumes of both laminar shale and 
dispersed shale. In doing so, it presumes a constant sand porosity in which the pore 
space is filled with dispersed shale up to a maximum equal to the sand pore volume. 
Because the dispersed shale properties are based on the external shales, the dis-
persed shale is more representative of infiltration residues of detrital shale within 
the pore space rather than authigenic clay. Once again, the failure to distinguish 
clay from shale can have important implications with regard to the real effective 
porosity in sandstones with a high dispersed-shale component. In cases where the 
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shaly sandstone is dominated by laminar shale, the model has good viability be-
cause the shale laminae are detrital shale rather than clay, so that volumetric esti-
mates are more robust, provided that the shale laminae have the same properties as 
the shale beds used for calibration.

The Thomas-Stieber plot has important implications as a qualitative guide in 
petrophysical interpretation. The averaging of shale laminae with sandstone layers 
may result in low gross effective porosities, and thin sandstones with good porosity 
can be eliminated from pay consideration. However, the discrimination of laminar 
shale can be used to allocate the shaly sandstone between shale laminae and clean 
sandstones with higher effective porosities. The subdivision of shale types also has 
a bearing on the choice of resistivity model used in the evaluation of fluid satura-
tions. If a shaly sandstone appears to be dominated by laminar shale, then older, 
volumetric shaly sandstone equations may be viable because the shaly sandstone is 
resolved as parallel resistance laminae of shale and sandstone. On the other hand, 
a strong dispersed-shale trend suggests a significant clay content within the pores, 
so that cation-exchange–driven models, such as the Waxman-Smits or dual-water 
models, may be more appropriate.

When used for quantitative analysis, the Thomas-Stieber model can be solved 
from the response equations for the density porosity and gamma-ray logs:

G V G V G V GL SS D SH L SH= −( )⋅ + ⋅( )+ ⋅1

and

Φ Φ Φ Φt L SS D SH L SHV V V= −( )⋅ − ⋅( )+ ⋅1

where VL and VD are the proportions of laminar and dispersed shale, G is the 
gamma-ray reading, and Φt is the density porosity, with the subscripts of SS and SH 
for sandstone and shale, respectively.

Although the Thomas-Stieber model had limited application following its intro-
duction in 1975, the emergence of tensor resistivity logging has sparked greatly 
renewed interest in the model as a basis for quantitative analysis (Page et al., 2001). 
The ability to measure resistivity in three orthogonal directions has provided a novel 
means to resolve shale laminae in shaly sandstones that were below the resolution 
of conventional logging tools. An isotropic shaly sandstone would have a similar 
resistivity regardless of direction of measurement, as contrasted with anisotropic 
shaly sandstones of interbedded shale and sandstone layers. Conventional hori-
zontal induction logging responds to shale/sandstone interbeds as resistances in 
parallel, while a vertical measurement reflects current transmission through a series 
of resistances. The two measurements are sufficient to differentiate thin shale/sand-
stone interbeds in the simplest scenario, where the borehole axis is orthogonal to 
the bedding (Figure 2.5); inclined strata require triaxial resistivity logging to resolve 
the more complex situation. Quirein et al. (2012) made a comparison between the 
Thomas-Stieber model and computations from tensor resistivity measurements and 
concluded that the results were equivalent when the beds were orthogonal to the 
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borehole. Where there was a relative dip, the two approaches could be reconciled 
if the dip and other parameters were incorporated. They also noted that more pay 
footage was located by applying a minimum effective-porosity cutoff to the sand-
stone effective porosity in sandstones with laminar shale, rather than the gross ef-
fective porosity.

Strategies for water saturation estimation in shaly sandstones become clearer 
once laminar shale and dispersed shale are evaluated as distinctive components. If 
the shaly sandstone is dominated by laminar shale with minimal dispersed shale, 
then the system is one of interbedded sandstones and shales with an apparent loss in 
porosity caused by the averaging of the logging tools. The averaged effective porosity 
is then a gross estimate, but can be corrected by eliminating the laminar shale from 
pay consideration and retaining the sandstone layers with their higher porosities. 
Water saturation within the sandstone layers is then most appropriately evaluated 
by a double-layer model (such as the Waxman-Smits or dual-water model), although 
a simple volumetric model (Simandoux) may be adequate. At the other extreme, a 
shaly sandstone dominated by dispersed shale implies an isotropic sandstone with 
no shale laminae, whose shale content consists primarily of clay minerals within the 
sandstone pores. The effective porosity is reduced by the clays within the pore space. 
Both the volumetric estimate of dispersed shale and water saturation are compro-
mised by the use of external shales as reference points. Their gamma-ray, neutron, 
density, and electrical properties may differ significantly from pore-filling clays, par-
ticularly if they contain different clay minerals. However, these questions can be 
resolved by special core analysis (SCAL) and more complex evaluation strategies can 
be designed to accommodate these issues.
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Figure 2.5: Diagrammatic representation of horizontal induction resistivity (Rh) and vertical 
induction resistivity (Rv) for anisotropic laminated shaly sandstones normal to the borehole and 
isotropic shaly sandstones with pores containing dispersed clay.
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CARBONATE POROSITY

Limestones and dolomites are both chemical rocks in the sense that the carbonate 
mineral framework may dissolve to form vugs, a term for pore sizes that can range 
anywhere from a dissolved particle to a cavern. In common with siliceous clastic 
rocks, the pore space also contains interparticle porosity, which can form either be-
tween grains or between crystals. Finally, a third form of porosity can occur within 
fractures, which have a major influence on permeability but occupy a very small 
volume. The pore space of fractures is typically below the resolution of standard 
porosity logs, so that estimates of fracture porosity are speculative when based on 
density, neutron, or sonic logs. However, while both neutron and density measure-
ments are responses to total porosity, it has been recognized for many years that 
the sonic log is primarily a measure of interparticle porosity. In one of the earlier 
papers to address this phenomenon, Nugent et al. (1978) pointed out that when the 
sonic porosity was less than either the density or neutron porosities, calculations 
of water saturation were overly optimistic. From this observation, they deduced 
that the apparent oil saturation was caused by isolated vuggy porosity, and that the 
sonic porosity was a useful measure of connected interparticle porosity. By utiliz-
ing neutron and density porosities in conjunction with sonic porosity, the total pore 
volume could be subdivided between “primary porosity” (sonic, interparticle) and 
“secondary porosity” (neutron-density minus sonic, vug).

The reasons that have been offered as to why the sonic log is “blind” to vug-sized 
pores have often been hazy, even though the phenomenon is widely exploited in 
petrophysical analysis. However, neutron and density measurements are based on 
the counting of radioactive particles from the volume of the entire formation, while 
the sonic tool selectively records the arrival of the fastest acoustic wave that travels 
to the receivers. Faster acoustic pathways in the borehole wall that do not intersect 
large vugs will result in shorter transit times. In addition, smaller vugs tend to have a 
more spherical shape and so have less influence on the acoustic wave than do typical 
elongated pore shapes (Ellis and Singer, 2007).

The measurement of the sonic or acoustic tool is the transit time of ultrasonic 
sound to traverse the formation of the borehole wall in units of microseconds per 
foot or meter. Conversion to porosity is most commonly made by linear interpol-
ation between values for the matrix mineral transit time and the fluid in the pore 
space. The pore fluid is taken typically to be mud filtrate water because of the shallow 
depth of investigation by the fastest acoustic wave. The linear interpolation was first 
proposed by Wyllie et  al. (1956) and based on laboratory measurements. In their 
experiments, they recognized nonlinearity at porosities that greatly exceeded those 
found in reservoir rocks, but proposed that for consolidated rocks, “the time-average 
formula is a good approximation” (Wyllie et al., 1958). The time-average relationship 
is universally known as the Wyllie equation and takes the form:

Φ
∆ ∆
∆ ∆s

ma

f ma

t t

t t
=

−( )
−( )
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where Φs is the porosity estimate, Δt is the acoustic travel-time log measurement, 
Δtma is the matrix transit time, and Δtf is the pore fluid transit time.

An improvement on the Wyllie equation was proposed by Raymer et al. (1980) to 
accommodate the nonlinearity of the transit time to the porosity relationship, the 
Raymer-Hunt-Gardner (RHG) transform:

1 1 2

∆
Φ

∆
Φ

∆t t tf ma

= + −( )

The RHG transform is empirical, but based on a larger sample of measurements than 
previous studies and designed to accommodate the entire porosity range. This trans-
form should be regarded as a second-order model to be used when improved accuracy 
is considered an important goal. In practice, the linear-interpolation method is still 
widely used as a reasonable approximation if the estimated porosity from logs is 
below 25 percent. In addition, calibrations based on core porosity are conventionally 
estimated by a linear relationship, which is equivalent to a Wyllie time-average func-
tion, but with the matrix travel time determined by statistical analysis.

VUG POROSITY EVALUATION FROM ACOUSTIC  
AND RESISTIVITY LOGS

Anselmetti and Eberli (1999) applied the Wyllie time-average equation to predict 
acoustic velocities in Miocene-Pliocene cores from the Great Bahama Bank and 
compared the expectations to measured velocities. When these were quantified as a 
velocity deviation, they were able to make a systematic corroboration of earlier quali-
tative observations that carbonates with separate-vug porosity had higher velocities 
than would be anticipated from the Wyllie equation. Digital image analysis was used 
by Weger et al. (2009) to relate measurements of pore size and shape to acoustic 
velocity deviations from the Wyllie time-average model. They demonstrated that the 
parameters of perimeter-to-area ratio and the dominant pore size explained much of 
the variability. Their findings from a grainstone and packstone subset of their data 
are reproduced in Figure 2.6 but are recast with reference to projected matrix transit 
times rather than velocity deviation. If the Wyllie time-average model was an ad-
equate descriptor, then matrix transit times should match approximately the value 
measured for calcite in limestones whose porosity is entirely interparticle. However, 
some variability in this ideal value can be anticipated because of impurities and 
fabric differences of a limestone matrix with a pure calcite crystal. The presence of 
vugs causes the projected matrix transit times to be displaced to lower values that 
Wang and Lucia (1993) called pseudo-matrix transit times.

The acoustic velocity relationships with digital image parameters (Figure 2.6) and 
their interpretation mirrors the patterns observed between digital image parame-
ters and porosity exponents (Figure 1.19), discussed in the previous chapter. Clearly, 
both acoustic and electrical properties are sensitive measures of the partitioning of 
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pore types in a dual-porosity system. However, the porosity exponent is a reflec-
tion of electrical efficiency, so that the discrimination of larger pores by resistivity 
measurements is also influenced by their degree of interconnection. In general, large 
dead-end pores will not participate in electrical flow, resulting in higher porosity 
exponent values. Consequently, vugs should be subdivided between separate and 
touching (connected) pores when comparing vug porosity evaluations based on core 
examination and resistivity properties (Lucia, 2007). On the other hand, the vug 
properties that primarily influence the acoustic log are the size and degree of spher-
icity.

Published research on acoustic and electrical properties of vuggy rocks have 
attempted to reconcile theoretical models with observations from core and logs. So, 
for example, Lucia and Conti (1987) empirically evaluated the separate-vug porosity 
(Φsv) in water-saturated carbonates from resistivity logs with an adaptation of the 
first Archie equation:

Φ
Φ

Φsv
w o

t
t

R R
=

−( ) −








 ⋅

log log

log
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Using the acoustic log, Wang and Lucia (1993) developed an empirical relationship 
between separate-vug porosity (Φsv) estimated by thin-section point counting and 
the acoustic transit time. Their relationship took the form of:

Φ ∆
sv

a b t= − −10 141 5( . )

where a and b are coefficients that vary with the carbonate rock type.
Oomoldic limestone reservoirs provide classic examples of vuggy porosity with 

increased resistivity reflecting poor connectivity between oomolds and higher 
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acoustic velocities caused by oomold size and shape. However, the relationships are 
often complex because diagenetic cementation and oomold crushing may modify 
connectivity and oomold shape, with variation both within and between ooid bars 
(Byrnes et al., 2000). In a case-study, measurements from core and logs were inte-
grated in an evaluation of oomoldic porosity in the Pennsylvanian Lansing-Kansas 
City “C” zone in a central Kansas well. Profiles of core, neutron-density, and sonic 
porosities are shown in Figure 2.7, together with dual-porosity partitions based on 
core measurements of formation factors and the resistivity log. The resistivity par-
tition of porosity was computed from the Watfa and Nurmi (1987) formulation of:
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Figure  2.7: Comparison of core total porosity (circles) with neutron-density log porosity 
(PHIt), sonic log porosity (PHIs), and connected porosity estimated from the deep resistivity 
log (PHIr) and core measurements of formation factor (diamonds) in a Pennsylvanian oomoldic 
limestone from central Kansas.
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Core measurements of the formation factor (F) and total porosity (Φt) can be used to 
calculate the apparent porosity exponent (m), which is then applied to the solution 
of the nonconnected porosity (Φnc). Alternatively, the resistivity log measurement in 
the fully water-saturated zones (Ro) divided by the formation water resistivity (Rw) 
provides a downhole estimate of the formation factor for the same purpose. The 
nonconnected porosity estimated from the resistivity model is systematically more 
than the “secondary porosity” implied by the difference between the sonic and total 
porosity from the neutron and density logs. This characteristic matches the obser-
vation by Brie et al. (1985) in their evaluation of oomoldic limestones in the Middle 
East that their estimates of acoustic spherical porosity were significantly larger than 
the secondary porosity.

The secondary porosity partition by the sonic log has been widely used to esti-
mate the apparent porosity exponent by applying the Nugent equation (Nugent, 
1984). In its original form, the Nugent equation is:

ma
s

t

= ⋅2 log
log

Φ
Φ

where ma is the apparent porosity exponent, Φs is the sonic porosity, and Φt is the 
total porosity from the density or neutron log. Tiab and Donaldson (2011) consid-
ered that the Nugent equation gave acceptable porosity exponents for porosities 
below 10 percent, but tended to underestimate their true values at higher porosities. 
This opinion is consistent with the notion that the sonic-log secondary porosity is an 
underestimate of the vuggy porosity. In the case study of the Lansing-Kansas-City 
oomoldic “C” zone, it was found that the sonic porosity could be reconciled with the 
nonconnected porosity by the relationship:

Φ
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which simply represents a rescaling of the secondary porosity to the matrix volume 
rather than to the bulk volume. The connected porosity is then:
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By replacing the sonic porosity with this estimate of connected porosity, the modi-
fied Nugent equation becomes:

ma
c

t

= ⋅2 log
log

Φ
Φ

Applications of Nugent-variant equations are a common approach to saturation esti-
mations in vuggy carbonates when a sonic log is available and as an alternative to 
the resistivity methodology described in Chapter 1. In a case study of a Bethany Falls 



[60 ]  Principles of Mathematical Petrophysics

limestone, oomoldic-reservoir porosity exponents were estimated using the Archie 
equation applied to completely water-saturated zones. If a useable relationship can 
be developed between porosity exponents and porosity, then the porosity exponents 
can be estimated for the hydrocarbon zones, based on their porosity. In contrast, 
a Nugent-variant approach utilizes log data specific to each zone, rather than esti-
mates based on a trend relationship.

Clearly, both resistivity and acoustic measurements play an important role in the 
reservoir evaluation of carbonate dual-porosity systems. However, rather than con-
sider them by independent algorithms and then reconcile their results, it is more 
fruitful to combine them in a comprehensive model. The model should have a sound 
basis in physical theory but have the capability of delivering viable solutions in real 
rocks. An early attempt at this approach was described by Brie et al. (1985), who 
considered secondary pores as spherical inclusions in a homogeneous matrix. The 
primary porosity was represented by a Wyllie linear relationship, and its electrical 
properties were set by the Archie equation. An evaluation of the acoustic proper-
ties of the secondary pores was then determined by parameters of the Kuster–Tok-
söz model, and conductivity was determined by the Maxwell–Garnet equations. The 
coordinated methodology was then used to compute porosity exponent values on a 
zone-by-zone basis within test wells and to compare the predictions with measured 
values.

In a computer simulation study, Kazatchenko et al. (2006) created a double-porosity 
system with a homogeneous, isotropic matrix containing small pores and large-scale 
inclusions of secondary pores. The secondary pores were modeled by triaxial ellip-
soids whose aspect ratios were varied in order to examine the influence of shape. 
From the simulation results, they concluded that the effects on both acoustic and 
electrical properties implied that there were four distinctive secondary pore types, 
which were: quasi-spherical vugs, oblate vugs, channels, and cracks. Each of these 
types could be identified when acoustic velocities were analyzed jointly with elec-
trical conductivity. Kazatchenko et al. (2007) then applied their findings to the joint 
inversion of conventional well logs to evaluate double-porosity vuggy and fractured 
carbonate reservoirs. They reported that results from boreholes in southern Mexico 
showed good matches with core data, image logs, and geological descriptions, so that 
the methodology could be used to improve carbonate lithotype classification and 
permeability estimations by predicting secondary pore interconnections.

Oomoldic reservoirs provide classic examples of dual-porosity systems whose 
larger pores have distinctive effects on acoustic and resistivity logs, in part because 
the pore shapes are essentially spherical. In contrast, the brecciation and dissolution 
processes of karstic weathering can result in vugs with inchoate and variable shapes 
of all sizes. However, the degree to which a pore shape can be related to a sphere is by 
the ratio of the internal surface area to volume, which, for a sphere, is the minimum 
possible. As shown by both core studies (Weger et al., 2009; Verwer et al., 2011) and 
computer simulation (Kazatchenko et al., 2006), vugs with more equant dimensions 
are likely to have greater effects than more elongate shapes. Consequently, volu-
metric estimations of vuggy porosity volume must necessarily be semiquantitative 
because of the variety of vug shapes, unless shape is considered as a contributory 
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parameter in the analysis. Even with this limitation, acoustic and resistivity evalu-
ations of vuggy porosity are a valuable contribution to facies analysis of carbonates 
and the interpretation of dissolution fabrics. Interpretations can be refined when 
these analyses are linked with fabric observations from core and image logs.

A case-study example is provided from a well in central Kansas, whose trajec-
tory was planned to cross a doline feature in the Cambro-Ordovician Arbuckle lime-
stone, interpreted from volumetric curvature analysis of 3-D seismic data (Figure 
2.8). The fault boundaries of the doline are clearly evident at the centre of the seismic 
record, with a dimension of about 1,000 feet, which was interpreted to be a collapsed 
paleocavern. The gamma-ray log from the horizontal section of this well (Figure 2.9) 
contrasts the shale and clastic content of the paleocavern breccias that disrupt the 
relatively low radioactivity of the stratiform carbonates lateral to the cavern. Rush 
(2013) applied the paleokarst classification system of Loucks (1999) to the subdiv-
ision of the section based on a combination of the image log and lithology logs. Rush 
(2013) distinguished two phases of vuggy-pore development with syndepositional 
evaporate dissolution of peritidal to supratidal carbonates contrasted with later dis-
solution and brecciation by glacioeustatic, vadose, and karstic processes. The image 
logs commonly showed bedding features in the stratiform carbonates adjacent to the 
collapsed section, but they were mostly absent within the paleocavern fill.

An assessment of vuggy porosity was made using the conventional acoustic and 
resistivity approaches applied to the sonic and resistivity logs. The profile of the sec-
ondary porosity from the sonic log shows a strong qualitative concordance with the 
nonconnected porosity estimated from the resistivity log within the stratiform mar-
gins and minimal occurrence of both within the paleocavern fill. These relationships 
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ture as a collapsed paleocavern. From Rush (2013).
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suggest that nonconnected equant vugs are common within beds of the Arbuckle 
limestone outside the collapse zone. However, their relative absence within the cha-
otic breccia of the paleocavern fill may indicate that secondary pores are both con-
nected and elongate. The distinctive but complex patterns make the case that the 
integration of secondary porosity transforms with image-log interpretation is an 
essential step to advance analysis from speculation to identification. However, once 
resolved, a useful prediction methodology could be developed for interpretation in 
wells that have resistivity and sonic logs but lack borehole images or core.

NMR LOGGING OF VUGGY POROSITY

The role of nuclear magnetic resonance (NMR) image logging data in examining the 
complete range of pore sizes will be discussed in great detail in Chapter 6. However, 
the immediate focus of this chapter section is to review petrophysical techniques 
that discriminate larger pores in a dual-porosity system. Longer relaxation times 
in the NMR T2-relaxation-time log correspond to larger pores, so that NMR logs 
should be an effective means for evaluating vugginess, provided that the logging 
speed is sufficiently slow to record relaxations associated with vugs. An exact corres-
pondence is confounded by the increased importance of the bulk diffusion relaxation 
and diffusion coupling between small and large pores, as elaborated in Chapter 6. 
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However, the occurrence of excessively slow times in the T2-relaxation-time spec-
trum are certainly a good indicator of vuggy porosity.

Chang et al. (1994) compared vugs observed in the core with T2 relaxation times 
and concluded that a threshold of 750 milliseconds corresponded to the appear-
ance of vugs observed by image point counting. This critical value can be expected 
to show some variation in comparable studies of other carbonate reservoirs, due to 
the effects mentioned, as well as the variability of relaxivity in carbonate mineral 
surfaces. A generalized expectation of about 1,000 milliseconds (one second) might 
be a useful arbiter for vug recognition.

Logs of the NMR T2 distribution are recorded as pore counts within bins, so that 
the practical evaluation of vug occurrence is based on pore volumes in bins with the 
longest relaxation times. As a case-study example, the Arbuckle limestone in a well in 
southern Kansas was both continuously cored and logged by an NMR tool. Pore vol-
umes were summed from T2-relaxation-time bins, whose times exceeded 1 second. It 
was postulated that the resulting vuggy “megaporosity” curve could be evaluated in 
conjunction with visual core assessment of the vugs. Qualitative descriptions of the 
occurrence of vugs in the Arbuckle limestone cores were allocated between categories 
and ordinal code numbers as: no vugs (0), pinpoint vugs (1), centimeter-sized vugs 
(2), and fist-sized vugs (3). Intervals with missing cores were assigned a code value 
of 4, because drilling through many of these intervals suggested pervasive vuggy 
porosity that destroyed the rock integrity. There is a good overall match between a 
profile of visual core vug assessment and megaporosity volume (Figure 2.10), and a 
cut-off level of 0.5 percent megaporosity was found to be the best discriminator for 
visual vugs within the Arbuckle limestone.
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CHAPTER 3

Permeability Estimation

PERMEABILITY IS A VECTOR

Because it is a measure of flow, permeability is a vector quantity, as contrasted with 
conventional petrophysical log data, which are responses to static properties of the 
rock. In the absence of a direct measurement of permeability, predictions must be 
inferred from the rock framework characteristics that control the ability of fluids to 
move through the rock. In this chapter, we consider methods that predict absolute 
permeability, that is, permeability with respect to a single fluid. This is the most 
widely used meaning of the term and would be immediately applicable to aquifers. 
In engineering applications to reservoirs, a relative permeability is assigned to each 
fluid phase, so that relative fluid rates and volumes can be characterized explicitly. 
Although the fundamental physics of permeability in tubes has been understood for 
many years, reliable estimations are difficult to make in all but the simplest rock 
types. As we shall see, one approach attempts to adapt modifications to a tube model 
to accommodate the complexity of pore-system geometry. This model-driven meth-
odology tends to be favored by engineers and contrasts with a data-driven geological 
approach that applies empirical relationships from core data from mercury porosim-
etry measurements.

PREDICTION OF PERMEABILITY FROM POROSITY

The most fundamental property used to predict permeability is that of pore volume. 
Both porosity and permeability are routine measurements from core analysis. If a 
useable relationship can be developed to predict permeability from porosity, then 
predictions of permeability can be made in wells that were logged with conventional 
measurements but not cored. The simplest quantitative methods used to predict per-
meability from logs have been keyed to empirical equations of the type:

log k P Q= + ⋅Φ
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or

log logk P Q= + ⋅ Φ

where P and Q are constants determined from core measurements and applied 
to log measurements of porosity (Φ) to generate predictions of permeability (k). 
These equations are the basis for statistical predictions of permeability in regres-
sion analysis, where porosity is the independent variable and logarithmically scaled 
permeability is the dependent variable. The fitted function minimizes the sum of 
the squared deviations of the permeability about the trend line. In unimodal pore 
distributions such as those that typify sandstones, the pore volume is commonly 
observed to be matched by a normal distribution. Bimodal and multimodal pore 
systems in carbonates can create a positive skew to the distribution, although this 
effect may be small if there is a dominant primary mode. In either case, the scaling 
of porosity in arithmetic or logarithmic units is not a significant issue, because it 
is the independent variable. Distributions of permeabilities are almost invariably 
lognormal in form, probably resulting as the product of a multiplicative, rather than 
arithmetic, process. Consequently, the permeability is most commonly scaled loga-
rithmically on porosity-permeability crossplots and is used within regression ana-
lysis in logarithmic form rather than in arithmetic darcy units. Because permeability 
is the dependent variable, the choice of scaling has implications, both with regard to 
the statistical fitting, but also with respect to the prediction results when applied to 
reservoir characterization. These implications will be discussed in more detail at the 
conclusion of this chapter, together with comparisons of other methodologies that 
compete with regression analysis in the prediction of permeability.

An example of fitting core measurements of permeability to porosity is shown 
for the Simpson sandstone (Middle Ordovician) from core measurements in Kansas 
reservoirs (Figure 3.1). As would be expected, there is a clear trend of increasing per-
meability with higher porosity, and this is fitted by a linear regression of log-scaled 
permeability on porosity. However, the prediction function has limited utility be-
cause of the broad scatter about the trend, with the result that a permeability at any 
given porosity can be estimated to an absurd degree of precision, but the observed 
permeability values at similar porosities range over several millidarcy decades. The 
degree of scatter will vary for different sandstones, but the major controlling factor 
for the dispersion is the grain size. Smaller grain sizes cause greater surface area, 
which decreases permeability; larger grain sizes in rocks of equivalent porosity 
causes a reduction in surface area and thus increased permeability (Nelson, 1994).

When the Simpson sandstone data set is subdivided by the grain size observed in 
the core (Figure 3.2), then the predictive error is reduced substantially by substituting 
functions for each of the facies with a different grain size, rather than a single global 
function. Notice that not only do the coarser-grained facies have higher permeabilities 
at any given porosity, but the scatter about their trends is relatively reduced, reflecting 
better sorting of coarser grains due to higher energy currents. The physical property 
that causes this permeability modulation is actually the internal surface area of the 
pore space, which is reflected both by the grain size and its complement, the pore size.
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FLOW-ZONE INDICATOR (FZI) DISCRIMINATION  
OF HYDRAULIC UNITS

The control of permeability by pore volume and internal surface area has been known 
for many years, and the relationship for a rock modeled as a bundle of capillary tubes 
is given by the Kozeny-Carman equation:

k
F Ss

=
−( )











Φ
Φ
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2 2 21
1
τ

derived by Kozeny (1927) and modified by Carman (1937). In this equation, the per-
meability (k) is in micrometer-squared units, effective porosity (Φ) is in fractional 
units, Fs is the shape factor of the tube, τ is the tortuosity of the tube, and S is the 
specific surface area (surface area per unit volume of solid). The collective term of 
Fsτ2 is widely known as the Kozeny constant, whose value (ironically for a constant) 
can vary anywhere between 5 and 100 in real reservoir rocks (Rose and Bruce, 1949). 
The issue of the variability of the Kozeny constant was addressed by Amafeule et al. 
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Figure  3.1:  Crossplot of porosity and permeability for the Simpson sandstone (Middle 
Ordovician) from core measurements in Kansas reservoirs.
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(1993) in a new formulation that first divided both sides of the Kozeny-Carman 
equation by the porosity and then took the square root:

k
F SsΦ
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When multiplied by 0.0314 to convert the permeability into millidarcy units, they 
designated the left-hand side of the equation as the reservoir quality index (RQI), 
so that:

RQI
k= 0 0314.
Φ

The pore volume-to-grain volume ratio (Φz) was then given by:
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Figure  3.2: Crossplot of porosity and permeability for the Simpson sandstone (Middle 
Ordovician) from core measurements in Kansas reservoirs subdivided by grain-size observed 
in the core.
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and the flow-zone indicator (FZI) was introduced to encapsulate the terms of shape, 
tortuosity, and specific surface area, by the equation:

FZI
F Ss

= 1
τ

The rearrangement and aggregation of the elements of the Kozeny-Carman equation 
by Amafeule et al. (1993) therefore gave the formulation of:

FZI
RQI

z

=
Φ

In calculating the FZI from core measurements of porosity and permeability, 
samples with similar values have similar pore-throat characteristics and can be con-
sidered to be in a common flow unit. By assigning samples to a set of hydraulic units, 
predictions of permeability can then be made in any well, cored or uncored, based on 
effective porosity alone, providing that the appropriate hydraulic unit can be identi-
fied. This follows from the predictive relationship:

k FZI= ( )
−( )
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with permeability in millidarcy units. The FZI values of Simpson sandstone core 
samples are shown in Figure 3.3, subdivided by the grain size reported from core ob-
servation. The coarser-grained facies show less variability in their FZI values, which 
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Figure 3.3:  Ordered FZI values of Simpson sandstone core samples subdivided by the grain-size 
reported from core observation.
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suggests more robust estimates of permeability, as contrasted with the FZI range for 
bioturbated sandstones and siltstones, and this is consistent with the visual impres-
sion of the relative line fitting of these facies in Figure 3.2. If permeability estimation 
in the finer-grained facies was an important goal, then a further subdivision of FZI 
within this facies could be pursued.

The flow-zone indicator methodology can be seen as a direct derivation of the 
Kozeny-Carman equation, where a formulation of tortuous capillary tubes has 
been adapted to accommodate the textural variability of real reservoir rocks. In this 
sense, it is model driven, but with the recognition that the FZI is controlled by the 
pore-throat size attributes, which ultimately determine the permeability. In an al-
ternative approach, the principal pore-throat size measured by mercury porosimetry 
is commonly estimated by the Winland equation, published by Kolodzie (1980) as:

log . . log . logr kair35 0 732 0 588 0 864= + ⋅ − ⋅ Φ

where r35 is the pore-throat radius in microns (μ) at 35 percent mercury saturation, k 
is the absolute permeability to air (mD), and Φ is the porosity (%).

The application of the Winland equation will be described extensively in Chapter 6 
as a method of defining distinctive petrofacies with common pore-throat sizes. These 
petrofacies then correspond broadly to the hydraulic flow units discussed here, with 
the former linked to pore-throat size explicitly and the latter, implicitly. This cor-
respondence is demonstrated in the crossplot of Figure 3.4, where r35 estimates of 
principal pore-throat size show a strong trend with the FZI values calculated for the 
Simpson sandstone core samples. The result is not unexpected, either petrophysically 
or mathematically, because of the similar form of the equations and their common 
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input variables of porosity and permeability. Facies-sensitive geologists have often 
favored the Winland equation and its variants, while the model-driven FZI approach 
has generally been more popular with engineers. Ultimately, both methods recog-
nize flow units (aka petrofacies) and use their discrimination methods of subdivision 
to strive for estimations of permeability that improve on global methods. This com-
monality was discussed by Corbett and Potter (2004), who noted the convergence 
of the methods as two closely related variants of permeability-driven rock-typing 
methods.

APPLICATION OF FZI TO PERMEABILITY PREDICTION

Bhattacharya et  al. (2008) described flow-unit modeling and permeability predic-
tion in Atokan sandstones of the Norcan East Field, Kansas, which provides an 
instructive case-study for reviewing the FZI methodology. This reservoir will be 
revisited in Chapter 6, when petrofacies will be discriminated by pore-throat sizes, 
rather than the present focus on permeability prediction.

The relationship between permeability and porosity from Atokan sandstone 
core measurements shows a weak positive trend, and the fitted linear function only 
accounts for an R-squared of 31 percent, and so it has a weak predictive power (Figure 
3.5). However, the role of grain size appears to be captured when FZI values are cal-
culated for the core samples and plotted against their gamma-ray values (Figure 3.6). 
The distinctive negative trend matches expectations that, as shale content increases 
and the grain size becomes finer, there is a systematic decline in flow-zone indicator 
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Figure  3.5: Crossplot of permeability with porosity from Atokan sandstone core measure-
ments, together with a fitted linear regression trend.
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values. The next task is to subdivide the FZI range into distinctive hydraulic units 
that can be applied to permeability prediction in uncored wells. If successful, the 
gamma-ray log can then be used to assign any zone to the appropriate hydraulic unit, 
and then the permeability can be estimated by inserting the logged porosity into the 
prediction equation associated with the hydraulic unit.

A variety of methods have been applied to the hydraulic-unit subdivision of FZI 
values. The original approach described by Amafeule et  al. (1993) was based on a 
visual inspection of a bilogarithmic plot of the rock quality index (RQI) versus the pore 
volume-to-grain volume ratio (Φz), where samples with the same FZI value will plot 
on a straight line with unit slope. Samples with similar FZI values are assigned to the 
same hydraulic unit. Clearly, some scatter is to be expected, even for distinctive hy-
draulic units, so that Amafeule et al. (1993) also suggested the examination of FZI his-
tograms in a search for distinctive modes that would reflect hydraulic units identified 
by FZI values. Abbaszadeh et al. (1996) advocated subdividing by a variance-clustering 
method applied to logarithmically scaled FZI values, because they would be expected 
to conform more closely to a lognormal distribution, in common with their controlling 
variable of permeability. For this purpose, they applied Ward’s algorithm of hierarch-
ical cluster analysis (Ward, 1963), which minimizes variability within clusters while 
maximizing variability between clusters. This method generates a complete range of 
cluster possibilities, ranging from one cluster to the same number of clusters as data 
points. Consequently, a decision must be made about the appropriate number of clus-
ters, from examination of the R-squared value, which expresses the proportion of vari-
ability within the clusters to the total variability. This decision will be conditioned by 
petrophysical judgment, because each cluster represents a distinctive hydraulic unit.

Ward’s algorithm was applied to the FZI values of the Atokan sandstone core sam-
ples, ordered with respect to their gamma-ray reading. Examination of the R-squared 
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Figure 3.6: FZI values of Atokan sandstone core samples plotted against their gamma-ray values.
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scree slope and its first derivative indicated a basic discrimination between three clus-
ters (Figure 3.7). The ranges of these hydraulic units are, successively, less than 30, 
30 to 40, and greater than 40 API units. The (geometric) mean value of the FZI values 
within each hydraulic unit is then the value assigned to characterize that unit. Predic-
tions of permeability generated by the corresponding three FZI equations are shown 
on Figure 3.8 and are related to the core measurements of porosity and permeability. 
The scatter of the observations about these trends clearly reflects the dispersion of 
sample FZI values about their hydraulic-unit mean. When applied to the prediction 
of permeability in uncored wells, the discontinuities of this tripartite model will be 
evident at gamma-ray curve values of 30 and 40 API units, where there will be abrupt 
changes in permeability as the model switches between hydraulic units.

Intelligent application of the FZI methodology requires some consideration of 
both the nature of the reservoir rock and the purpose for which the permeability 
predictions are to be applied. If the range of reservoir rock types constitutes a con-
tinuum, then their subdivision may be arbitrary, with the creation of artificial per-
meability discontinuities at their boundaries. On the other hand, if there are indeed 
distinctively different reservoir rock types, then they should be discriminated so 
that permeability relationships can be refined within each, rather than agglomer-
ated within a heterogeneous global function. Geological knowledge concerning the 
depositional and/or diagenetic history of the rock types may already determine the 
appropriate model. However, an empirical perspective on the situation is given by 
the distribution of the FZI values themselves, as to whether they lend themselves 

Ward algorithm clustering

100
0.1 1

Flow-zone indicator (FZI)
10

A

30

G
am

m
a-ray (A

PI units)

B

40

C

50

0

1

Fi
rs

t d
er

iv
at

iv
e

R
-s

qu
ar

e 
%

0
1 2 3 4 5

Number of zones

6 7 8 9 10

Figure  3.7:  Ward’s algorithm of hierarchical cluster analysis applied to the gamma-ray val-
ues of ordered FZI values of Atokan sandstone core samples to determine boundary values of  
potential hydraulic units.



[ 76 ]  Principles of Mathematical Petrophysics

to obvious partitioning or whether they appear to show generalized transitions. The 
second issue concerns purpose. Is the intent to characterize the permeability of indi-
vidual zones within the reservoir, or will the results be used in an engineering simu-
lator that uses discrete layers? If the permeability estimates are averaged by layer 
for a simulator, then hydraulic-unit zonation may be appropriate, so that the layer 
structure can be keyed to the actual variability observed in the FZI values.

Ambastha and Moynihan (1996) observed situations where FZI values formed a 
continuous spectrum with no reasonable expectation of a finite number of hydraulic 
units. They proposed that a regression analysis method should be substituted in 
these cases, bypassing the hydraulic-unit subdivision and treating FZI as a depen-
dent variable to be predicted from petrophysical log responses. From a judicious 
choice of input logs or log transforms, an effective FZI predictor could be developed 
through analysis of fit and error statistics. Having sidestepped hydraulic-unit sub-
division, it is tempting to continue this line of thought, by abandoning FZI calcula-
tions altogether and expanding the regression model so that it is keyed directly to 
permeability prediction, using multiple inputs recorded by petrophysical logs.

Returning to the Atokan sandstone data, the linear regression analysis of logarith-
mically scaled permeability on both gamma-ray value (γ) and porosity takes the form of:

log R k P Q= + ⋅ +Φ .γ

and there is an improvement in the R-squared fit to 72 percent. The regression predic-
tion takes the form of a plane, whose gamma-ray contours are shown in Figure 3.9, 
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Figure 3.8:  Predictions of permeability from FZI equations for Atokan sandstone hydraulic 
units located by Ward’s clustering algorithm applied to gamma-ray log readings. The ranges of 
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and maintains a good concordance with the hydraulic units (A, B, and C) discriminated 
by Ward’s algorithm of variance partitioning. The FZI hydraulic units can be matched 
with facies seen in the core (Bhattacharya et al., 2008) so they are distinctive both stat-
istically and geologically. However, it can be argued that the overlap in their proper-
ties favors modeling by a continuous function, which will still register abrupt changes 
caused by facies discontinuities when applied to the permeability prediction. A com-
parison between the multiple regression prediction of permeabilities and core mea-
surements in an Atokan sandstone section is shown inFigure 3.10. This Atokan section 
will be revisited in Chapter 6, when the core data are transformed to pore-throat size 
estimates, which are ultimately the major control of permeability.

PERMEABILITY PREDICTIONS FROM POROSITY AND 
“IRREDUCIBLE” WATER SATURATION

In intergranular pore frameworks, the success of predictive methods that utilize 
estimators of particle size in characterizing permeability is keyed to their geomet-
rically determined link with the internal surface area. By the same token, measures 
of pore-size distributions will be related to internal surface area because the pores 
are the complements of the grains. In a hydrocarbon reservoir, the water saturation 
at “irreducible” conditions (above the transition zone with no producible water) will 
be effectively controlled by pore size. Wyllie and Rose (1950) used this as the basis 
of a permeability prediction model in which they conjectured that irreducible water 
saturation was related to internal surface area, from their observations that the 
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saturation increased both with decreasing grain size and poorer sorting. Their ori-
ginal model incorporated the formation factor as an expression of tortuosity, but it 
was simplified to the generic form:

k
P
S

Q

wi
R= Φ

which can be seen to be a Kozeny-Carman model, where the surface area term has 
been replaced by the irreducible water-saturation term (Swi) as an ersatz surface-size 
measure.

Timur (1968) used maximum-likelihood statistics to determine the parameter 
values for the prediction of permeability in sandstones, based on porosity and irre-
ducible water saturation from laboratory measurements of 155 core samples from 
US fields. The Timur equation is:

k
Swi

= 0 136 4 4

2

. . .Φ

where both porosity and irreducible water saturation are in percentage units.
Timur’s terminology for irreducible water saturation was “residual water satur-

ation” (Swr). Other workers use the term “immobile water saturation,” while retaining 
the symbol Swi or (Swirr). The term “irreducible” is something of a misnomer, because 
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mercury injection tests show that saturations at this level can ultimately be reduced 
to zero when subjected to sufficiently high pressures. However, the term “immobile” 
captures the essential meaning of Swi. In rocks at these saturations, the remaining 
water is held by capillary forces at grain surfaces and within micropores. In Timur’s 
laboratory measurements, the sandstone core samples were centrifuged at a differ-
ential pressure of 50 psi in an air/water system, which is approximately equal to 
330 psi mercury injection pressure. This value represents the pressure at which pore 
throats larger than micropores have been penetrated by the nonwetting fluid. The 
remaining water is therefore “immobile” under conventional reservoir conditions. 
The water that has been expelled is equivalent to “free fluid,” which exhibits normal 
Darcian flow.

The Timur equation is widely used as a default estimator of permeability in sand-
stones, either from a chart (e.g., Figure 3.11) or as an option within a log-analysis 
software package. Its predictions represent generalized values for a “typical” sand-
stone and are only valid in reservoir sections above the transition zone. At depths 
within the transition zone, water saturations will be higher than at “irreducible” con-
ditions, with the result that the permeability estimates will be biased to lower values. 
An example of an application of the Timur equation is shown for a Morrow sand-
stone section in a western Kansas well (Figure 3.12). In the upper part of the sand-
stone, water-free production confirms that the water phase is immobile, and so the 
Timur-equation predictions are valid, although only approximate. In the transition 
zone below, there is a systematic decline of the predicted permeabilities to false val-
ues that result from water saturations that are increasingly larger than irreducible. 
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These observations are substantiated by the nuclear magnetic resonance (NMR) log 
run in this well, where the partition between mobile and bound water identifies the 
reservoir, the transition zone, and a permeability estimate keyed to log measure-
ments of pore-size distribution.

NMR ESTIMATION OF PERMEABILITY IN CLASTIC PORE SYSTEMS

The introduction of nuclear magnetic resonance (NMR) measurements as a labora-
tory procedure provided a reliable means to measure pore-size distributions in core 
samples. Seevers (1966) recognized the potential for permeability estimation based 
on NMR relaxation times, and the methodology was extended to borehole applica-
tions when NMR logging became a practical procedure. Because larger pore sizes 
would be expected to be correlated with higher permeabilities, Kenyon et al. (1988) 
proposed the predictive relationship, commonly known as the Schlumberger-Doll 
Research (SDR) equation:

k a T gm= ⋅ 22 4Φ

where the principal pore radius is estimated by the geometric mean of the T2 dis-
tribution and the coefficient a is a formation scaling parameter. If the pore system 
is unimodal and the pore-body size is proportional to the pore-throat size, then the 
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model is appropriate because permeability is controlled by pore-throat size. How-
ever, these ideal conditions are often poorly met, and the mode of the T2 distribu-
tion will be shifted in hydrocarbons, particularly gas, because of their low hydrogen 
index (HI).

In siliceous clastics, T2 relaxation times of 3 ms and 33 ms provide robust de-
fault partition values for subdividing the total pore space between clay-bound water, 
immobile capillary water (BVI), and free fluid (FFI). In carbonates, a T2 relaxation 
time of 92 ms is often used as the default value for the partition between free- and 
capillary-bound water. However, the more variable surface relaxivity of carbonate 
surfaces necessitates the choice of a formation-specific value for the cutoff time, 
when improved permeability estimates in carbonates are required. The Coates model 
(Coates et al., 1991) uses this pore-fluid partitioning in the equation:
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where C is a formation scaling factor whose default value is conventionally set at 10, 
Φnmr is the NMR effective porosity, and a and b are exponents whose default values 
are four and two, respectively.

In applying the fluid partition ratio, the Coates model relates the permeability to 
the pore surface, which is in contrast with the SDR model, which is keyed to the pore 
radius. Commonly, both equations are computed as alternative models, because they 
have strengths and weaknesses with respect to different reservoirs. However, the 
Coates-equation estimation of permeability is generally considered to be more reli-
able, because the SDR equation is more adversely effected by hydrocarbons. With that 
said, it is common practice to modify the coefficients of the Coates equation through 
calibration with core measurements of permeability (e.g., Shafer et al., 2005).

PERMEABILITY ESTIMATION IN CARBONATES DOMINATED BY 
INTERPARTICLE POROSITY

The permeability prediction methods that have had some limited success in clastic 
rocks have fundamental limitations when applied to carbonates. The pore morph-
ology of these chemical rocks is often highly variable in shape, size, and connectivity 
as a consequence of diagenesis and fracturing. However, in cases where the fabric of a 
limestone or dolomite is dominated by particle size (either grain or crystal), then the 
resulting pore network is not dissimilar to that of clastic textures, and predictions tied 
to pore volume and particle size can be viable. Lucia (1995) allocated Dunham car-
bonate fabrics between three petrophysical classes of grainstones, grain-dominated 
packstones, and mud-dominated packstones/wackestones, as defined by distinctive 
fields on a crossplot of permeability and interparticle porosity (Figure 3.13). Lucia 
(1995) recognized that the fabrics formed a continuum, so that the class subdivision 
functioned as a broad template for the development of predictive functions for per-
meability that incorporated crystal or grain size with interparticle pore volume.
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Even when dominated by interparticle porosity, carbonate rocks are sufficiently 
variable to require that permeability prediction functions be based on core mea-
surements from a specific reservoir. Crossplots of porosity and permeability mea-
surements from Lower Permian Chase and Council Grove limestone cores in the 
Hugoton gas field (Figure 3.14) show generalized trends and weak differentiation 
by Dunham texture. As would be expected, the flow-zone indicator (FZI) values for 
the Dunham classes are marked by a broad trend of values decreasing with par-
ticle size (Figure 3.15). The comparison is useful as a unifying theme that relates 
geological observations of texture from core with parameters developed from a 
modified Carman-Kozeny model. The link between the two approaches can yield 
expectations of FZI values from geomodels constructed from interpretations of 
depositional environments, and so it can yield potential improvements in perme-
ability estimates.

EVALUATION OF PERMEABILITY IN DUAL- AND  
TRIPLE-POROSITY SYSTEMS

As discussed in the previous chapter, pore networks in carbonates can form single-, 
dual-, or triple-pore systems. Single-porosity systems are dominated by interparticle 
pores, and this is often termed “matrix porosity” by petrophysicists. While adding 
little to the pore volume, fracture porosity can radically increase permeability. By 
contrast, vugs commonly cause major increases in pore volume, but their effect on 
permeability is controlled by their degree of connectivity. Consequently, predictions 
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Figure 3.13:  Allocation by Lucia (1995) of Dunham carbonate fabrics between three petro-
physical classes of grainstones, grain-dominated packstones, and mud-dominated packstones/
wackestones, as defined by distinctive fields on a crossplot of permeability and interparticle 
porosity. Figure simplified from original figure by Lucia (1995), © 1995 American Association 
of Petroleum Geologists (AAPG), reprinted by permission of the AAPG, whose permission is 
required for further use.
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Figure  3.14:  Crossplot of porosity and permeability measurements from Lower Permian 
Chase and Council Grove limestone cores in the Hugoton gas field, subdivided between grain-
stones and packstones (open circles) and wackestones and mudstones (solid diamonds).
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of permeability in dual- and triple-porosity systems are fraught with problems whose 
resolution must be attempted on a case-by-case basis.

While not presenting an easy solution, NMR logging has been a fruitful avenue to 
explore through its characterization of pore-body sizes within carbonates. The most 
commonly used prediction of permeability is based on the Coates equation:

k
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nmr
a b
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Φ

but with an adjustment in the parameters that maximizes the fit with core mea-
surements of permeability. Prior to adjusting the parameters, an initial step may 
be to calibrate the T2 cutoff value if core measurements of irreducible water satur-
ation are available. Most commonly, the formation scaling factor is varied to find 
the best permeability match, while holding the exponents a and b at their default 
values of four and two. In a more exhaustive treatment, regression analysis can be 
applied to all the parameters as a nonlinear optimization problem (Shafer et  al., 
2005), although constraints are typically imposed on the exponents to avoid un-
realistic results.

In fitting a modified-Coates-equation prediction of permeability to a section of 
Arbuckle limestone, the formation scaling factor, C, was adjusted from its default 
value of ten to twelve, which provided the best fit of the permeability predictions to 
the whole-core measurements of permeability. The resulting prediction curve and 
core permeabilities are shown in Figure 3.16, where extreme fluctuations in perme-
ability reflect pore sizes over a range of scales. Lower permeabilities are matched 
with single-porosity systems of mud-supported and grain-supported dolomites, 
while high permeabilities are linked with vuggy intervals. This differentiation is 
demonstrated by the variance partitioning of Arbuckle core permeabilities by Ward’s 
algorithm, where low permeabilities are matched broadly with mudstones, inter-
mediate permeabilities with grain-supported textures, and high permeabilities with 
vuggy intervals (Figure 3.17). The role of the larger pores in increasing permeability 
can be seen in Figure 3.18, where averaged pore volumes with T2 relaxation times 
greater than 1,000 ms are shown plotted against core permeability. Although the re-
lationship has some limited predictive power, it fails to take into account the degree 
of connectivity between the bigger pores, and so predictions have large associated 
error terms.

If carbonate pore frameworks can be classified in terms of single-, double-, and 
triple-systems, it seems reasonable that the permeability of an individual sample 
is the sum of contributory permeabilities from the different elements of matrix 
permeability, fracture permeability, and connected-vug permeability. As already 
discussed, variations within the matrix-permeability component can be related to 
the Dunham textural classes of particle size, which reflect their complementary 
pore size. At the larger scale, the contribution of vug permeability is dictated both 
by the volume of vuggy porosity and its degree of interconnection. To the degree 
that the T2-relaxation-time spectrum characterizes the pore-size distribution, and 
which in turn may mirror the pore-throat distribution, then the permeability should 
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be based on the entire T2 spectrum in complex pore systems. In a single system of 
interparticle porosity, a dominant pore throat is commonly observed (as described 
in Chapter 6). The Kenyon equation then captures this model by keying the predictor 
to the geometric mean of the T2 distribution. However, if the T2 distribution is more 
dispersed, with the development of secondary modes, then it can be argued that 
the permeability prediction should be based on a weighted function applied to the 
binned porosities with the generalized form:
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Figure 3.16:  Prediction of permeability computed from a calibrated Coates equation applied to 
an NMR log compared with whole-core measurements of permeability in a Cambro-Ordovician 
Arbuckle limestone interval.
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A case study of a T2-distribution binned-weighting procedure for predicting per-
meability in the Montney formation was described by Curwen and Molaro (1995), 
and the results were compared with those generated by the Coates equation. They 
concluded that there was no substantial difference between the two methods in 
some zones, while the binned approach performed much better in other zones. They 
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Figure 3.17:  Histogram of Arbuckle limestone core permeabilities with variance partitioning 
by Ward’s algorithm into groups A (mostly mud-supported fabrics), B (primarily grain-supported 
fabrics), and C (vuggy intervals).
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cautioned that no individual method was the ultimate panacea and that the binned 
method had the intuitive appeal of providing a potential relation between pore-body 
size and pore-throat size that might or might not be substantiated in different field 
studies.

The statistical partitioning of Arbuckle limestone core permeabilities into three 
distinctive groups was evaluated in terms of their average T2-relaxation-time dis-
tributions (Figure 3.19). The total porosity is almost the same in all three groups, 
which is fortuitous, because it follows that differences in permeability must be 
interpreted with respect to the binned porosities. Notice that the predominantly 
grain-supported and vuggy groups, B and C, respectively, have very similar distribu-
tions, with a primary mode at 256 ms and a weak secondary mode at 16 ms. Vug dis-
solution occurred within the grainstones and is reflected by increased porosities at 
the longest relaxation times. In order to predict the higher permeabilities associated 
with the vuggy group, preferential weighting of the bins that exceed 1,000 ms would 
be appropriate and confirms the relationship shown in Figure 3.18. By contrast, the 
bulk of pore development in the lowest permeability group, A, is concentrated within 
the faster times of the T2-relaxation-time spectrum, as would be expected for the 
mudstones that dominate this group.
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Figure  3.19:  Average T2-relaxation-time distributions of Arbuckle limestone groups differ-
entiated by Ward’s algorithm: A (mostly mud-supported fabrics), B (primarily grain-supported 
fabrics), and C (vuggy intervals).
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When the Coates equation is applied to carbonates, a default cutoff value of 92 
ms is commonly used. It is interesting to note that the Coates partitioning of the 
distribution could be considered to be a selective weighting of grouped bins. Conse-
quently, although the physical model of the Coates equation is generally conceived to 
be surface-area dependent, it might also be thought of in terms of the bin weighting 
of coarser pores versus finer pores. If the sizes of the pore throats are related to the 
pore-body size information in the T2 distribution, then in an alternative formula-
tion, the Coates model is driven by the pore-throat size distribution.

A WILDERNESS OF MIRRORS

The lodestar of all permeability estimation procedures from logs should be the prin-
ciple of “fit-for-purpose.” The first question then follows as, “what is the purpose?,” 
which leads to the second question, “What is the estimation method that will best 
achieve this purpose?” The most fundamental issue to be surmounted is that trad-
itional logs are measurements of static properties, but permeability is a vector. Con-
sequently, the logs must be calibrated to a permeability measurement, and core data 
remains the benchmark standard (Worthington, 2004). Permeability predictions will 
then be constrained to the scale of the core, which could either be a small plug or a 
whole core sample. Multiple scaling issues are introduced both in the analysis phase 
of reconciling core and log measurements with incompatible depth resolutions and 
when determining whether the predicted permeability is intended for small-scale 
characterization or application within a reservoir simulator. Various methods of 
averaging have been proposed to reconcile core and logs in permeability estimations 
that can be validated at the scale of the core, as reviewed by Worthington (2004), 
but the results require a careful strategy if they are scaled up to grid cells within a 
simulation, so that static and dynamic predictions of permeability match to within 
an acceptable tolerance.

Prior to the emergence of reservoir simulators as a routine industry procedure, 
the focus of permeability prediction was aimed at the scale of the typical log measure-
ment. By this means, zones of high permeability could be identified and values pre-
dicted. However, this aim is thwarted when standard regression analysis is applied 
to permeability and scaled logarithmically. Without correction, the regression will 
underestimate the high permeabilities, and the effect becomes progressively greater 
at higher values. At the same time, the lower permeabilities will tend to be overes-
timated, but not to the degree of the values in the high range. Compensation can 
be made by applying a weighted regression (Davis, 2002), in which the weights are 
determined by the equation:

w
nk
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=
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2

where wi is the weight of the ith observation, ki is its permeability, and n is the 
number of permeability measurements.
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Both standard regression and weighted regression are parametric techniques, 
so that improvements in the methodology may not be matched by improvements 
in prediction if there is significant departure from normality in the logarithmically 
transformed permeability distribution. Also, the importance of permeability estima-
tion may not be equally assigned to every permeability value. While agreeing with the 
observation that standard regression results in biased weighting, Wendt et al. (1986) 
chose more pragmatic criteria for their corrective strategy. They experimented with 
different weighting schemes and evaluated the results from the perspective that the 
high-permeability zones were of the greatest importance and the low-permeability 
zones, the least. Ironically, this is the reverse of the outcome of standard regression. 
Wendt et  al. (1986) identified “high-permeability streaks” in their core database 
and compared it to the performance of an optimally weighted regression analysis in 
their prediction. In their case study, they achieved a success rate of 60 percent, with 
the additional interesting result that the number of high-permeability streaks that 
were missed approximately matched the number of false positives. Therefore, the 
total number of high-permeability streaks was a good estimate, but 40 percent were 
located at the wrong depths.

The application of neural networks to permeability prediction could be considered 
as a logical extension of this approach, but one in which the parametric model is 
abandoned and the weightings are determined by the neural network itself. Fur-
thermore, no structural form of the model is assumed, such as linear, polynomial, or 
any other function that could be described as a global equation. Instead, the weights 
of the neural network are adjusted by training with log measurement inputs to 
match the permeability measurements that are output by back-propagation through 
hidden network layers. The methodology is a supervised learning technique in that 
the inputs and outputs are monitored, but the richly interconnected layers of the 
neural network result in a black-box operation, as contrasted with the white-box (or 
glass-box) design of formal regression models. As a result, judgments must be made 
by the experienced user as to the structure of the neural network that appears to be 
the best for the problem at hand, which in this case is the permeability.

One of the greatest dangers is the problem of overfitting, where extremely suc-
cessful results can reflect the fact that the neural network is learning by rote, rather 
than from generalized associations. When an overfitted network is applied to predic-
tion outside the calibration wells, the results are typically erratic. This characteristic 
is well known to all neural-network practitioners and is best accommodated through 
a disciplined strategy of calibration followed by validation, before moving on to pre-
diction. A good introductory case study of neural-network prediction of permeability 
from logs is provided by Rogers et al. (1995), with an application to a Smackover field 
in southern Alabama.

Initial experimentation using simple neural networks to predict permeability has 
been followed by progressively more complex procedures that have attempted to 
provide realistic improvements. In particular, a single neural network applied to the 
same input patterns may generate different sets of weightings as its training con-
verges on different minima of the objective function. To accommodate this problem, 
many alternative networks are trained, and the best network or combination of 
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networks are then selected based on their performance. This procedure is the basis 
for the committee neural-network approach described by Bhatt and Helle (2002), in 
its application to permeability prediction from logs. They also concluded from their 
work that a three-layer model is the most efficient and reliable, consisting of input, 
hidden, and output layers, that improves on the overgeneralization of a simpler 
model, while avoiding being compromised by the overfitting that can result from 
a more complex network. The case study conducted by Bhatt and Helle (2002) indi-
cated that when four input logs are used, then 150 samples would be sufficient for 
training, and the number of neurons in the hidden layer should be between eight 
and ten.

In other developments, neural networks have been subsumed as one of several 
methods collectively termed “soft computing.” The most widely known of these is 
fuzzy logic. Fuzzy logic was first introduced by Zadeh (1965) and represents yet an-
other step away from the parametric models of classical statistics. The comparative 
features are summarized well by Fang and Chen (1997) in their paper on fuzzy mod-
eling and prediction of sandstone permeability. They point out that fuzzy modeling 
is assumption-free, not tied to a mathematical model, and can incorporate linguistic 
information as well as numerical data. Because the method is encoded in fuzzy rules, 
it is robust with respect to outliers and can deal with conflicting data. A central con-
cept of fuzzy logic is the notion of “possibility” as distinct from the probability used 
in standard statistical methods.

Cuddy (2000) described the application of fuzzy logic to the prediction of per-
meability in Jurassic sandstones of the North Sea Ula field. In his introduction to 
the technique, he explained how core permeabilities are first allocated between bins 
whose ranges are bounded by equal percentile subdivisions on a logarithmic scale. 
The mean and standard deviation of each well log used for the permeability pre-
diction is then determined for each bin to ascertain both the most likely value and 
its associated uncertainty, or fuzziness. Using the mean and standard deviation of 
each bin, the fuzzy possibilities of each log are combined at each depth to predict a 
permeability and its associated fuzzy possibility. Each of the permeability bins has 
an associated fuzzy possibility, and the highest fuzzy possibility is then taken as the 
most likely binned permeability. A numerical value for the predicted permeability 
can then be calculated from the weighted average of the two most likely bins. In the 
design of the fuzzy prediction model, Cuddy (2000) recommends that the number 
of bins should be selected with respect to the total sample size, so that a minimum 
of thirty core permeability measurements are allocated to each bin. The predictive 
ability of the technique is then evaluated by blind-test validation in cored wells not 
were not used for the calibration.

Most publications that describe yet another novel technique to predict perme-
ability make comparisons of the supposedly improved performance over earlier 
methods, while itemizing the benefits and limitations of all approaches. The com-
petitive nature of these discussions is appropriate, both to justify the publication in 
the first place and to encourage the reader to try the new technique. The designers of 
the eclectic techniques that make up soft computing appear to embrace collaboration 
rather than competition in their development of hybrid methods. So, for example, 
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Huang et al. (2001) introduced a neural-fuzzy technique combined with genetic algo-
rithms in the prediction of permeability in petroleum reservoirs. Neural networks 
were first used to create membership functions and to estimate permeability auto-
matically from log data. The trained networks were then used as fuzzy rules and 
hypersurface membership functions. Defuzzification operators applied to the results 
from these rules were optimized by genetic algorithms. Huang et al. (2001) applied 
the integrated methodology of the neural-fuzzy-genetic algorithm to a petroleum 
reservoir in offshore Western Australia and concluded that validation tests showed 
smaller errors than those associated with more conventional techniques.

Regardless of the complexity of the techniques described, almost all have been 
applied to sandstone reservoirs that are dominated by intergranular porosity. The 
addition of vugs and or fractures in carbonates introduces a level of complexity that 
is extremely difficult to accommodate by a general methodology. Useful solutions, if 
they exist, must be evaluated on a reservoir-by-reservoir basis to accommodate vari-
able and multiple histories of diagenesis. Although fuzzy-logic models are nontradi-
tional, the rules of a practical application would have some transparency and could 
be understood, at least intuitively, by a petrophysicist. It is easier to conduct an audit 
trail that explains the poor predictions of a fuzzy system than it is to remedy the 
unseen and convoluted results of a neural network. Prior to permeability prediction, 
it would be appropriate to apply fuzzy logic as a classifier applied to subdivisions of 
the carbonate reservoir in terms of distinctive permeability facies. So, for example, 
three subdivisions of Arbuckle core permeabilities were recognized and related to 
carbonate textures of mudstones, grainstones, and vuggy facies (Figure 3.17). So, 
the initial step would be to establish the best logs to apply in a fuzzy-logic model for 
classifying permeability textural facies, and then within each of these facies, develop 
a fuzzy prediction for the permeability value for each zone.

The role of the larger pores and their degree of connectivity can be assessed from 
borehole image logs based on the conductive connections between conductive spots. 
When evaluated through a connectivity coefficient, Russell et al. (2002) were able 
to improve permeability estimates when used in conjunction with other log data. In 
addition to its high resolution, imaging information has directional properties, un-
like the nondirectional volumes that are measured by standard logs. Consequently, 
the azimuthal resistivity data can be applied to an anisotropic permeability evalu-
ation, as described by Anxionnaz et al. (1999), when integrated with other logs. It is 
common practice to measure core permeability in two directions horizontally (max-
imum permeability and orthogonal permeability), as well as the vertical component, 
but it has been less common to consider the directional anisotropy of the perme-
ability within a single coherent prediction model. However, as Delhomme (2007) 
pointed out, the increasing proportions of deviated and horizontal wells have made 
considerations of permeability anisotropy a major factor in both directional drilling 
and productivity.

The increasing and varied demands of production from both traditional and 
newer resource plays can make the goal of permeability prediction from logs seem 
like a trail through a wilderness of mirrors, particularly in view of the bewildering 
variety of mathematical methods that have been brought to bear on the task. The 
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truism that common sense is a virtue, is the key to success. First, each reservoir must 
be considered on a case-by-case basis, particularly with regard to its degree of het-
erogeneity and the nature and interconnectedness of its pore systems. Secondly, the 
purpose of the permeability prediction must be stated clearly, so that permeability 
predictions of specific zones are differentiated from estimates scaled up for simula-
tion, and considered with other factors such as anisotropy. Finally, the appropriate 
numerical strategy must be evaluated carefully in terms of whether the final result 
matches the expectations of the user. Does the prediction conform to the desired 
scale? Does apparent precision overwhelm accuracy? Are the uncertainties associ-
ated with the result within the acceptable tolerance range? Does the methodology 
introduce bias, and, if so, is the bias to high or low permeabilities? In the end, per-
meability is such a crucial component of reservoir development that methodologies 
for its prediction from logs will continue to evolve, as evidenced by the extensive 
literature on the subject that continues to grow every year.
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CHAPTER 4

Compositional Analysis of Mineralogy

SOME MATRIX ALGEBRA

Formation lithologies that are composed of several minerals require multiple por-
osity logs to be run in combination in order to evaluate volumetric porosity. In the 
most simple solution model, the proportions of multiple components together with 
porosity can be estimated from a set of simultaneous equations for the measured log 
responses. These equations can be written in matrix algebra form as:

CV = L

where C is a matrix of the component petrophysical properties, V is a vector of the 
component unknown proportions, and L is a vector of the log responses of the evalu-
ated zone. The equation set describes a linear model that links the log measurements 
with the component mineral properties. Although porosity represents the propor-
tion of voids within the rock, the pore space is filled with a fluid whose physical prop-
erties make it a “mineral” component. If the minerals, their petrophysical properties, 
and their proportions are either known or hypothesized, then log responses can be 
computed. In this case, the procedure is one of forward-modeling and is useful in 
situations of highly complex formations, where geological models are used to gen-
erate alternative log-response scenarios that can be matched with actual logging 
measurements in a search for the best reconciliation between composition and logs. 
However, more commonly, the set of equations is solved as an “inverse problem,” in 
which the rock composition is deduced from the logging measurements.

Probably the earliest application of the compositional analysis of a formation by 
the inverse procedure applied to logs was by petrophysicists working in Permian car-
bonates of West Texas, who were frustrated by complex mineralogy in their attempts 
to obtain reliable porosity estimates from logs, as described by Savre (1963). Up to 
that time, porosities had been commonly evaluated from neutron logs, but the val-
ues were excessively high in zones that contained gypsum, caused by the hydrogen 
within the water of crystallization. The substitution of the density log for the por-
osity estimation was compromised by the occurrence of anhydrite as well as gypsum. 
Collectively, the mix of three minerals and porosity put the solution beyond the reach 
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of graphical methods, such as crossplots and nomograms, which were the standard 
procedures of that time.

The log-analysis solution to this problem required the estimation of the true volu-
metric porosity that simultaneously accommodated the effects of the variable con-
tents of gypsum, anhydrite, and dolomite. By using neutron, density, and sonic logs 
together, the log-response equations were:

Neutron: Φ Φn g a d fn G n A n D n= ⋅ + ⋅ + ⋅ + ⋅

Sonic: ∆ ∆ ∆ ∆ ∆ Φt t G t A t D tg a d f= ⋅ + ⋅ + ⋅ + ⋅

Density: ρ ρ ρ ρ ρb g a d fG A D= ⋅ + ⋅ + ⋅ + ⋅Φ

which contain four unknowns within three equations. The model is completed by a 
fourth “unity” equation that combines the proportions of gypsum (G), anhydrite (A), 
dolomite (D), and the true fractional porosity (Φ), as a closed system:

Unity:  1= + + +G A D Φ

The equations can be rewritten in a matrix algebra formulation as:

CV = L

where C is the matrix of neutron, transit times, and grain densities of gypsum, an-
hydrite, dolomite, and pore fluid, supplemented by a line of unit values; V is the 
vector of their unknown proportions in the zone; L is a vector of the zone log read-
ings of neutron porosity, transit time, and bulk density, together with a unit value. 
The equation set describes a determined system, and the solution for the unknown 
vector, V is:

V =C L-1

where C-1 is the inverse of the C matrix.
Savre (1963) described how this procedure was coded in a computer program, as a 

pioneer application of computers to petrophysics. An example of the graphical output 
drafted from one of the earliest computer runs is shown in Figure 4.1 (Alger et al., 1963), 
where profiles of porosity, dolomite, anhydrite, and gypsum are shown from a Perm-
ian San Andres formation section in West Texas. Savre (1963) compared the porosity 
estimations computed by this method with core measurements of porosity. The initial 
results seemed disappointing, but it was discovered that the core porosities had been 
overestimated because of dehydration of the gypsum in the core sample treatment. 
Once appropriate precautions were applied to the core analysis, there was an improve-
ment to a much more reasonable match between the log estimates and the core mea-
surements of porosity. The problem caused by the presence of gypsum in the accurate 
assessment of porosity from logs in the San Andres formation is now widely recognized 
and routinely resolved by compositional-analysis software (Hedberg and May, 1990).
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At the time that this early application was made, computing power was typically 
provided by a single mainframe computer in the company or university, which had 
extended computing times and limited memory, while programming code was a spe-
cialized and time-consuming task. The same application is very easy to implement 
today as a spreadsheet procedure, using standard matrix functions and graphical 
outputs. As an example, sonic, density, and neutron porosity logs are shown of a San 
Andres formation section of Waddell Field, Texas, and their divergent curves show 
the marked influence of both anhydrite and gypsum (Figure 4.2). The introduction 
of the photoelectric-factor log in the 1980’s provided an important new measure of 
mineralogy because of its direct response to the aggregate atomic numbers of the 
formation. Consequently, the composition can be resolved using neutron, density, 
and photoelectric-factor logs, and the sonic log can be used to partition the pore 
space between interparticle and vuggy/moldic porosity. Integrated core and log 
studies by Lucia (1999) show this pore-partition method to be an effective measure 
of vug porosity in these dolomites. The compositional solution is shown in Figure 
4.3, where log estimates are compared with core evaluations (Nissen et al., 2008). 
There is a close match between log-estimated total porosity and core porosity, as 
contrasted with the raw porosity logs (Figure 4.2). The depth range for estimated 
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Figure 4.1:  Graphical output profiles of porosity, dolomite, anhydrite, and gypsum from one 
of the earliest computer runs that processed neutron, sonic, and density logs of a Permian San 
Andres formation section in West Texas. From Savre (1963).
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anhydrite and gypsum content is closely matched by the observed occurrences of 
these minerals in the core, although the quantitative estimates are probably only 
approximate. However, better estimates can be made with the incorporation of the 
geochemical log whose measure of sulfur is tied directly to sulfate content (Cannon 
and Horkowitz, 1997).

COMPOSITIONAL-SOLUTION EVALUATION

The inverse solution is a simple and powerful procedure for compositional analysis, 
but its simplicity carries certain assumptions that must be considered carefully. In 
particular, the basic model contains no intrinsic constraint to preclude negative esti-
mates of compositional proportions. The unity equation dictates the closure of the 
system so that the proportions collectively sum to unity. However, individual propor-
tions can have a negative value or one that exceeds unity. Rather than representing 
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Figure 4.2:  Gamma-ray, photoelectric-factor, sonic, density, and neutron porosity logs of a San 
Andres formation section of the Waddell Field, Texas.
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mathematical error, apparently anomalous zones are located outside the compos-
ition space defined by the mineral endmembers as vertices. Consequently, the gen-
eration of negative proportions is a perfectly natural consequence of the model and 
can contain useful feedback information. If the negative values are small, then this 
is usually caused by the stochastic nature of the input nuclear logs coupled with the 
borehole rugosity perturbations. If they are large, the possibility of washouts and gas 
effects should be examined before evaluating the possibility of another mineral that 
is not included in the composition model.

If these explanations are not sufficient, then negative proportions of the compo-
nents have a role as a basic check on the validity of the model used for compositional 
analysis. As such, they are diagnostic errors with an information content to be used 
to guide the analysis to a better solution. The distinction between errors that are 
acceptable as minor, random, measurement noise and systematic deviations is best 
made by a comparison between the original logs and the logs predicted by the model 
solution. The predictions are given by:
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Figure 4.3:  Compositional log analysis of a San Andres formation section of the Waddell Field, 
Texas in terms of dolomite, gypsum, and anhydrite, pore space partitioned between interpar-
ticle and vuggy/moldic porosity, and comparison with core measures of porosity and the pres-
ence of anhydrite and gypsum. From Nissen et al. (2008).
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If the inverse procedure has generated zone solutions with proportions that 
are negative or exceed unity, then the adjustment to rational proportions will 
result in log predictions that will deviate from the original logs. The devia-
tions between measurements and predictions can then be examined to differ-
entiate minor measurement errors from systematic perturbations that require 
intervention and correction. In the more sophisticated models to be reviewed, 
tool-response errors are actively incorporated within the solution algorithm, 
together with constraints that preclude irrational compositional proportions. 
However, if the solution results in compositional proportions that are all posi-
tive, then there will be an exact match between the logs and model predictions. 
This equivalence does not imply that the result is geologically correct; it simply 
means that the solution is rational and consistent with the choice of components 
and their properties. There may be other satisfactory solutions based on alter-
native mineral suites.

UNDERDETERMINED SYSTEMS

The basic compositional inversion procedure requires a precise match between the 
number of knowns and unknowns. This situation is called a “determined system.” 
The alternative possibilities are that the number of logs is insufficient to provide 
a unique resolution of the proportions of the components (an underdetermined 
system), or that the number of logs exceeds the number of components (an over-
determined system). In reality, it is likely that most formations present underde-
termined compositional problems, if all the constituents are counted and matched 
against the number of logs run in a typical borehole. As counterpoint, many of the 
minerals will be found in small quantities, and the overall composition dominated 
by a few components.

McCammon (1970) and Harris and McCammon (1971) considered alternative 
model procedures for the estimation of mineral compositions from logs in under-
determined cases. Although their algorithms have been superseded by optimization 
procedures, their approach is instructive concerning the role of information in log 
compositional analysis and the potentially competing criteria of mathematical opti-
mality and geological reality. McCammon (1970) considered the underdetermined 
system in terms of classical information theory, which proposes that the least-biased 
solution is the one that maximizes the entropy function:

E p pi i= ∑ log

where pi is the proportion of the ith component. This equation for entropy is closely 
approximated by that for proportional variance:
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The maximum of the variance function, P, is close to the condition of maximum 
entropy, and the resulting optimal solution is easier to compute using the matrix 
algebra equation:

V C CC Lt t= ( )−1

where V is a vector of unknown proportions, C is the matrix of component log prop-
erties, t signifies a matrix transpose, and L is the vector of the zone log responses 
(Doveton and Cable, 1979).

The compositional solution from the proportional variance algorithm is optimal 
from a classical statistical viewpoint: the average squared errors between the esti-
mates and the real compositions should be the minimum possible.

This is a conservative philosophy that aims to be least wrong or risk averse, 
with a minimum error as penalty. However, mineral proportions are frequently 
distributed in a highly unequal manner. Therefore, the real rock composition will 
often be one of several extreme possibilities, rather than the less likely seemingly 
homogeneous composition that can result from a minimum-variance solution. The 
correct interpretation of a bland compositional solution is that it represents the 
average of a range of possibilities. As such, it is a good estimate of the average, 
but may be a very poor prediction of the particular: the composition of the zone 
in question. Such a result is a useful diagnostic that suggests that several extreme 
alternatives should be reviewed and that extra information is required. The infor-
mation can take a variety of forms, such as explicit geological knowledge of the 
range of actual compositions or the use of additional constraints that preclude 
impossible solutions.

The interrelationships between component volumetric estimates and logs at 
differing degrees of indeterminancy can be illustrated by an example case study. 
The gamma-ray, photoelectric-factor, density, and neutron porosity logs of a Mis-
sissippian section (Figure 4.4) show variations in porosity in a succession of cherty 
carbonate lithologies that are the final result of episodes of deposition, diagenesis, 
and weathering. The section is capped by spiculitic chert underlain by dolomitic 
cherty limestone and cherty limestone, which becomes progressively less cherty 
with depth.

The minimum-variance compositional-analysis solution for the mineral and por-
osity variation of the Mississippian section are shown in Figure 4.5. In the extreme 
limiting case, no logs are available and so the solution partitions equal proportions 
between the dolomite, chert, calcite, and pore components. When one log is used, for 
example, the density log, information is introduced that is reflected in the compos-
itional solution. Notice that the porosity estimate is reasonable (even if inaccurate) 
because of the major difference between the pore-fluid density and the mineral den-
sities, as contrasted with the relatively smaller density differences between calcite, 
dolomite, and quartz, which causes poorly resolved variation in the mineral com-
position. Note that this would not be the case in a San Andres formation application 
because of the comparatively high-density contrast between anhydrite, dolomite, 
and gypsum, which, of course, was the original work with composition analysis 
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that provided sound estimates of porosity. With the application of both density and 
neutron logs to the Mississippian section, there is an improvement in the mineral 
volumetric estimates, with better differentiation of dolomite from chert, but with 
some degree of ambiguity that is finally resolved by adding the photoelectric factor 
to create a fully determined solution system.
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Figure  4.4:  Gamma-ray, photoelectric-factor, density, and neutron porosity logs of a 
Mississippian section of cherty carbonate lithologies in southern Kansas.
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OVERDETERMINED SYSTEMS

Many rocks are dominated by a relatively small number of components, so that the 
number of logging-tool measurements may exceed the number of significant litho-
logical components. The situation becomes overdetermined when the number of 
log-response equations is greater than the number of components. The appropriate 
solution is then the one that most accurately reproduces the original logs when the 
logs are calculated as predictions from the compositional solutions. Using conven-
tional statistical theory, this solution is the one that minimizes the sums of squares 
of the deviations between the original logs and their predictions. The least-squares 
solution is given readily by the matrix algebra equation:

V C C C Lt t= ( )−1

where the terms are the same as those in both the determined- and 
underdetermined-matrix algorithms given earlier. The matrix formulation 
requires an additional weighting function to allow for the fact that the logging 
measurements are recorded in radically different units. Without any weighting, 
the error minimization is predicated on equal units and results in a solution 
that preferentially honors logs with the highest range of data. The modified 
least-squares algorithm is then:
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Figure  4.5:  Minimum-variance compositional-analysis solutions for the mineral and por-
osity variation of the Mississippian section for underdetermined systems of no logs, one log 
(density), two logs (density plus neutron), compared with a determined system solution from 
density, neutron, and photoelectric-factor logs.
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V C WC C WLt t= ( )−1

where W is a diagonal matrix that contains the elements of a weight vector (Harvey 
et al., 1990). The weights may be assigned based on physical first principles or by a 
standardization scheme, such as a transformation from the original measurement to 
a scale anchored to the mean and counted in units of standard deviation.

For any given zone, the sum-of-squares error is given by:

e L L L L
t

= −( ) −( )^ ^

where L^ is the vector of log responses associated with the least-squares solution. The 
error term can be plotted as a monitor log to highlight zones where there are striking 
inconsistencies between the model and the log responses. The overall performance 
of an algorithm may be judged from the standard error, computed from the summed 
zone errors as:

s
e

n me =
− −

Σ
( )1

where n is the number of observations and m is the number of logs.

OPTIMIZATION MODELS FOR COMPOSITIONAL SOLUTIONS

Current compositional-analysis procedures have moved beyond the simple inversion 
algorithms described above, so that constraints and tool-error functions have been 
incorporated as part of the solution process. The methodology was first developed by 
Mayer and Sibbit (1980), who applied modified steepest-descent strategies to hunt 
for an optimal solution that minimized the “incoherence” between the logs and their 
predicted values. For any given log, the incoherence function is given by:

I
a a

A
A A

=
−( )
+( )

^
2

2 2σ τ

where IA is the incoherence for log A, a is the log response for the zone, â is the predic-

tion of a, and σA
2  and τ A

2  are the uncertainties associated with the log measurement 
and the response equation, respectively.

The uncertainty term for each log measurement is compounded from the sources 
of sensor error, data acquisition, and the dispersions associated with environmental 
corrections. The response-equation dispersion represents the uncertainties intro-
duced by linear approximations, erroneous choices of component log responses, and 
hidden factors, such as the influence of textural parameters. It seems reasonable to 
suppose that these two types of uncertainty are independent, so that they can be 
summed as one total error term for each tool:

uA A A
2 2 2= +σ τ
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The total log incoherence for any particular depth zone is the sum of the separate log 
incoherences:

I I I It A B C= + + +⋅⋅⋅

The form of the equation shows that the solution will tend to be most strongly influ-
enced by the logs to which the most confidence can be attributed. Logs with large 
errors will have greater incoherences and will contribute more to the total incoher-
ence term.

Constraints are also included and take the general form of:

g vi i( ) ≥ 0

where gi is some function that constrains the value of the unknown proportion of the 
ith component. Rigid, mathematical constraints are those that preclude the occur-
rence of proportions that are negative or those that exceed unity. Geological and local 
constraints incorporate relations that conform to general geological principles or 
prior knowledge of local geology. These geological constraints are more generalized, 
so that appropriate uncertainties are assigned to them. The constraint dispersions 
generate additional incoherence terms to be considered. A  combined-incoherence 
function is then the sum of the log and constraint incoherences:
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2σ τ τ

Notice that if the system is fully determined, then the total incoherence will be zero, 
provided that no constraints are violated. This special situation is the limiting case 
of applications that are otherwise presumed to be overdetermined. In a routine ap-
plication of the optimization algorithm, the number of logs would be expected to 
exceed the number of components. In part, this is feasible because the bulk of rock 
compositions tend to be dominated by relatively few components. In addition, the 
range of wireline measurements used today typically extends beyond the traditional 
porosity logs to resistivity, spectral, gamma-ray, and geochemical logs.

The optimization method of Mayer and Sibbit (1980) is an iterative search pro-
cedure. The system model of input logs and output components are first defined, 
then the incoherence values associated with each log type are entered, together with 
the constraints to be met. For each zone, an initial composition is estimated by an 
approximate method and used as the starting point for a sequence of intermediate 
solutions. At each step, the incoherence is calculated between the input log responses 
and those predicted from the solution. A gradient is also computed as the means to 
generate the next solution, using a steepest-descent technique. The process termi-
nates when it is determined that convergence has been satisfied, at which time there 
is no appreciable difference between successive solutions. The final solution will be 
approximate, but the total incoherence between the logs and the compositional esti-
mate will be the minimum possible. The combined display of real and theoretical logs 
is invaluable as a quality control mechanism to alert the user to problem zones that 
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may be optimal, but are flatly wrong. The generality of the approach allows alterna-
tive and remedial attempts to be made without major difficulty.

In further refinements, Gysen et al. (1987) described an extension of the method 
to the simultaneous optimization of component proportions and response param-
eters. Moss and Harrison (1985) also reported a technique for solving the uncer-
tainty multipliers that contain the total error associated with each tool. Although 
the errors cannot be solved for every depth zone, they can at least be estimated for 
selected intervals and assumed to be effectively constant between zones.

MULTIPLE-MODEL SOLUTIONS OF ROCK COMPOSITION

Clearly, it would be both impractical and unreasonable to incorporate all miner-
als that could possibly occur into a single and universal solution. Instead, mineral 
associations that typify common lithological successions are grouped as the basis 
for alternative compositional models. The fundamental subdivision differentiates 
between clastic, carbonate, and evaporite models. A specific model may be selected 
based on prior geological knowledge, or several alternative models may be evaluated 
and the choice of the final model made from a mix of statistical and geological judg-
ment.

The mineral properties that are listed represent ideal values with differing 
degrees of variability, especially since field occurrences of minerals often differ from 
museum-quality specimens. So, for example, the density of dolomite can be quite 
variable because the mineral ranges from calcium magnesium carbonate towards 
ankerite with increasing amounts of iron substitution. The tabulated value of 2.88 
gm/cc is high and more typical of an iron-rich dolomite from West Texas, but grain 
densities of about 2.85 gm/cc are more common in Paleozoic dolomites of the mid-
continent, as shown by core grain-density measurements.

Phyllosilicate minerals pose a difficult problem because their composition is 
so variable. However, the clay-mineral properties listed provide a useful reference 
standard for estimating the hypothetical composition volumes in the absence of ex-
plicit information keyed to the formation that is being analyzed. The estimates can 
be considered as normative, as contrasted with modal predictions of clay-mineral 
proportions based on X-ray diffraction analyses from the core.

Optimal, minimum-error solutions are worthless if the component model is in-
correctly specified. Meaningful results are best obtained by patient geological evalu-
ation of a sequence of solutions where the results of each are used to improve the 
successive solution. Modern compositional-analysis software utilizes the power of 
the error-minimization method, but allows user interaction so that alternative geo-
logical models can be compared.

Quirein et al. (1986) described the use of quadratic programming techniques and 
linearized response equations as an improvement over the penalty-constraint ap-
proach used by earlier methods. In addition, they incorporated a program to solve 
for poorly known log responses of a component subset, as an optimization pro-
cedure applied to specific depths that could be used for calibration. These calibration 
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intervals are those in which both logs and compositions are known and are most 
typically those that have been cored. In addition, knowledge of composition can be 
utilized from other sources. Not all component log responses need to be estimated, 
since their properties are restricted to a limited range. However, a subset of mineral 
components has ambiguous and locally variable properties. The most notorious of 
these components are clay minerals, and these will be discussed more fully in the 
following section.

In common with earlier optimization methodologies, the system is assumed to be 
either determined or overdetermined. The use of multiple alternative models then 
allows a more realistic treatment of this assumption, in which common associations 
can be modeled in parallel and a final selection made between them at any depth. 
Wherever possible, each separate model is designed to be close to fully determined, 
in an attempt to find a good match and to sidestep problems associated with the 
estimates of log and equation dispersions (Marett and Kimminau, 1990). The ap-
propriate logs for each model are clearly those that discriminate well between the 
separate components. If a poor choice of logs is made, then the model is ill condi-
tioned. The model structure can be checked through the computation of the condi-
tion number of:

C DCt

where C is the matrix of component log responses and D is a matrix of uncer-
tainty values. The condition number is higher for ill-conditioned models and gives 
a measure of the sensitivity of proportion estimates to small changes in component 
log responses (Quirein et al., 1986). The choice between alternative models for any 
zone can be made by the user, based on an assessment of the relative incoherence 
of the solutions and their feasibility as reasonable geological descriptions. Alterna-
tively, the decision can be made on the basis of probability established either from 
comparison of alternative solutions or the use of a Bayesian prior probability.

While generally still applied to an overdetermined system, the multiple models 
are not far removed from determined matches of components and logs. Where a 
model becomes determined, the solution is that of a simple and fast matrix inversion 
with zero incoherence, provided that the nonnegative constraint is not violated. The 
analysis of the relative conditioning of the model system is a valuable mathematical 
contribution to the determination of which logs provide the maximum discrimin-
ation of model components that will lead to the most stable estimates of volumetric 
proportions.

ELUCIDATION OF CLAY MINERALS

Shales are composed typically of a mixture of clay minerals, quartz, carbonates, and 
iron minerals, as well as other accessory components. Clay minerals are markedly 
different from other rock-forming minerals in terms of both their complexity and 
their variability. Shales present special problems for log interpretation, and while 
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many algorithms have been designed for their volumetric estimation, the meaning 
and limitations of their results should be understood.

The log most commonly used to estimate shale content is the gamma-ray log, 
which sums the natural radiation from potassium-40 and isotopes of the uranium 
and thorium series. The majority of shales are mixtures of clay minerals and a silt 
fraction that is typically composed of quartz, calcite, feldspar, iron oxides, and other 
materials. Most, but not all, of the radioactivity is associated with the clay-mineral 
content. Yaalon (1962) found an average silt content of 41 percent from his study of 
thousands of shales. The standard (but arbitrary) scale that is universally used for 
gamma-ray logs is set by the primary calibration test pit at the University of Hous-
ton, where a radioactive cement calibrator is assigned a value of 200 API units; the 
scale was conceived originally so that a typical midcontinent shale would register at 
about 100 API units (Ellis, 1987).

In cases where a spectral gamma-ray log has been recorded, the measured gamma 
rays are subdivided between the contributions from potassium (in percent or pro-
portion), uranium, and thorium (the last two in parts per million). Expressed in 
these units, logs of subsurface shales can be compared with laboratory data for elem-
ental concentrations in shales measured from a variety of geological studies.

A conventional gamma-ray log in API units can be approximately reconstructed 
from the elemental abundances by multiplying their estimates by eight for uranium 
(ppm), four for thorium (ppm), and sixteen for potassium (%), and then summing 
their contributions (Luthi, 2001). This relationship provides a useful method for 
predicting subsurface gamma-ray logging values of shale samples from outcrop and 
core, based on laboratory geochemical measurements. Analyses of the North Ameri-
can shale composite (NASC) reference standard (Gromet et al., 1984) reported val-
ues of Th 12.3 ppm, U 2.66 ppm, and K 3.2 percent, which converts to an equivalent 
standard gamma-ray (SGR) log reading of 121.7 API units. By way of comparison, 
the Marine Sciences group's black shale composite (BSC) described by Quinby-Hunt 
et al. (1989) is characterized by values of Th 11.6 ppm, U 15.2 ppm, and K 2.99 per-
cent, which is equivalent to an SGR log reading of 215.84 API units. As might be 
expected, the potassium and thorium contents of this composite are not markedly 
dissimilar from the NASC standard. However, the high variability of the content of 
uranium among the black shales results in a broader range for this standard, so that 
a maximum equivalent of about 3,700 API units would be expected for the black 
shale with the most elevated uranium content that was reported by Quinby-Hunt 
et al. (1989).

In more detailed work, the older and broader methods of shale evaluation have 
been expanded to the quantitative assessment of clay-mineral species. Clay miner-
als show differing degrees of variability, but are generally subdivided between four 
major types: illite, smectite, kaolinite, and chlorite. Clay-mineral typing is based on 
several log criteria, which must be considered carefully and collectively. Ellis (1987, 
p.460–461) noted that the four principal clay-mineral types could be combined 
into two types, based on their hydroxyl content. Kaolinite and chlorite have eight 
hydroxyls, as contrasted with four for smectite and illite. The neutron log is sensitive 
to this difference, which can be used as one diagnostic guide, through comparison 
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of the neutron and density porosities when they are both scaled with respect to a 
quartz matrix. The photoelectric factor is also a useful clay discriminator because 
of its control by the aggregate atomic number. Ellis (1987, p.451–454) pointed out 
that iron-free aluminosilicate clays would have photoelectric absorption characteris-
tics that are virtually the same as for quartz. Therefore, variations in the photoelec-
tric factor within shales are primarily a reflection of iron content. Overall, there is 
a tendency for a progressive increase in iron from low values in kaolinite, through 
smectite and illite, to high values for iron-bearing chlorite. Distinctions between clay 
minerals can also be made on the basis of spectral gamma-ray logs, particularly in 
the differentiation of relatively potassium-rich illites, from low-potassium kaolinite 
and chlorite.

The quantitative estimation of clay-mineral abundances from the neutron, 
density, photoelectric-factor, and spectral gamma-ray measurements is fraught with 
difficulty. Wide compositional changes within clay-mineral groups pose special prob-
lems. Useful quantitative models are not easy to define and are frequently ambiguous 
in their interpretation. The most realistic approach would be to coordinate log mea-
surements with laboratory analyses of core samples. The core values may be idealized 
as a calibration standard in the development of a statistical prediction model for clay 
minerals from logs. Even this strategy must be considered thoughtfully and hon-
estly. The most widely used laboratory method for estimating quantities of clay min-
erals is that of X-ray diffraction. Even with careful sample preparation procedures, 
the error of clay-mineral estimates from X-ray diffraction can be routinely expected 
to be 50 percent or more of the reported value (Eslinger and Pevear, 1988, p.A-24). 
Nevertheless, an important result is that at least the appropriate mineral subset can 
be identified with some confidence. This ensures that the correct components will 
be selected for compositional analysis from logs. Reconciliation of the log estimates 
with X-ray diffraction analyses should then be made within a model that attributes 
appropriate error magnitudes to both data sources.

A case study of this type of application was made in a well that penetrated a Lower 
Cretaceous clastic succession with a wide range of clay-mineral types. The Lower Cre-
taceous Dakota formation in Kansas is the record of a complex of deltaic deposits, 
with fluvial sandstones, alluvial-plain clays, and estuarine and paralic units that 
underlie extensive marine shales. The logs and core summary from a hydrology ob-
servation well (Figure 4.6) show a fairly typical succession of interbedded sandstones 
and shales formed in a variety of depositional environments. Clay mineralogy within 
the shales is highly variable, so that there is relative enrichment in kaolinite within 
the thick paleosols, which contrasts with the more illitic marine shales. Smectite 
is common throughout the succession, and bentonites occur at some horizons as 
records of volcanic ash falls. Sample analyses of mineral composition from X-ray dif-
fraction were used to calibrate the logs in the well (Hoth and Doveton, 1999). The 
results could then be used to interpolate composition in this well between sample 
points and to provide a composition predictor in neighboring wells that were logged, 
but either not cored or not sampled. The mineral composition of the Dakota forma-
tion based on X-ray diffraction analysis is shown in Figure 4.7, together with sedi-
mentary environment interpretations from core observations.
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Potassium, uranium, thorium, density, neutron porosity, and photoelectric-factor 
logs were used as predictors to estimate proportions of organic carbon, illite, 
smectite, kaolinite, iron minerals, and quartz. The model is fully determined, but 
the mineral properties have different degrees of uncertainty associated with them; 
for example, quartz coefficients can be set with some confidence, while clay-mineral 
properties are more speculative. The initial values of the coefficient matrix, drawn 
from various sources, are shown in Table 4.1. The basic inversion algorithm described 
can be adapted to include an iterative procedure in which the log properties of the 
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component assemblage are successively modified within physically reasonable con-
straints to produce an optimal least-squares match with core measurements. The 
iterative search can be made by a Newton-Raphson method, which is coded as the 
Solver option in the Excel software package. The best-fit least-squares solution was 
matched with the modified coefficient matrix, as shown in Table 4.1. The overall per-
formance of this matrix as a predictor can be gauged by creating a crossplot of the log 
predictions of mineralogy with their X-ray diffraction (XRD) measurements (Figure 
4.8). Discrepancies are inevitable, not only because of logging errors, but because of 
residual depth misregistration, differences in sample size, statistical errors of XRD 
analyses, and other factors. However, attention should be focused on the general 
power (or lack thereof) of prediction and the distinction between minerals that are 
estimated crisply and those that defy estimation.

Following the optimal least-squares calibration of the logs with XRD volumetric 
estimations to establish the mineral-component log properties, the entire section 
was processed using the standard inversion procedure. The compositional profile  
(Figure 4.9) shows patterns of variation that supply useful supplementary infor-
mation to the features seen in the core. An illite-smectite marine shale at the base 
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Table 4.1.  INITIAL AND MODIFIED COEFFICIENT MATRICES OF URANIUM 

(URAN), PHOTOELECTRIC-FACTOR (PEF), POTASSIUM (POTA), THORIUM (THOR), 

NEUTRON POROSITY (NPHI), AND DENSITY (RHOB) VALUES OF ORGANIC CARBON 

(ORG), IRON MINERALS (FE), ILLITE (I), ILLITE-SMECTITE (I-S), KAOLINITE (KA), 

QUARTZ. (Q), AND POROSITY (PHI)

org Fe I I-S Ka Q phi

Initial Coefficient Matrix:
URAN 130 0 4.5 3.5 5.5 0 0

PEF 0.20 13 4.5 3 1.9 1.8 0

POTA 0 0 5.5 4 0 0 0

THOR 0 0 18 18 15 9 0

NPHI 50 13 20 45 35 −2 100

RHOB 1.20 4.90 2.66 2.61 2.59 2.65 1

UNITY 1 1 1 1 1 1 1

Modified Coefficient Matrix:
URAN 130 0 8.3 2.8 9.7 0 0

PEF 0.50 20.99 6.76 1.80 2.88 1.80 0.50

POTA 0 0 6.25 3.80 0 0 0

THOR 0 0 37.47 12.52 43.82 1 0

NPHI 45.0 15.0 20 55.3 30.0 −5.0 100

RHOB 1.20 4.90 2.66 2.61 2.59 2.65 1

UNITY 1 1 1 1 1 1 1
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[ 112 ]  Principles of Mathematical Petrophysics

is succeeded by paralic and channel sandstones, which are overlain by a stacked 
paleosol sequence of hematite-stained paleosols, with a pronounced upward trend 
of increased kaolinite/decreased illite that probably reflects soil-leaching processes. 
The paleosol sequence is cut unconformably by a large channel sandstone, which is 
overlain by flood-plain facies with variable clay composition. Finally, the sequence 
is terminated by a paralic sandstone and a major transgressive marine shale in 
which organic carbon contents are elevated through preservation under reducing 
conditions on the sea-floor. The data from this well provides both calibration and 
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prediction, but the calibrated inversion matrix can also be applied to Cretaceous sec-
tions in other Kansas wells that were logged but not cored, in order to track regional 
changes in mineral assemblages in both time and space.

COMPOSITIONAL ANALYSIS FROM GEOCHEMICAL LOGS

Geochemical logging tools measure induced gamma-ray spectra that are created 
when a formation is bombarded by high-energy neutrons from a pulsed electronic 
source. A matrix-inversion spectral-fit algorithm then separates the spectrum into 
individual elemental sources. The major rock composition elements of silicon, cal-
cium, magnesium, iron, sulfur, titanium, and carbon are estimated together with 
the rare earth element, gadolinium. In addition, potassium, thorium, and uranium 
can be estimated from the natural gamma rays emitted by formations and measured 
by the spectral gamma-ray log. As a consequence of the direct relationship between 
elemental data and mineral compositions, more realistic mineral transforms have 
been developed that are a major improvement on models based on mineral prop-
erties. However, a distinction must be made between normative minerals that are 
computed from transforms of elemental data and modal minerals that are observed 
visually or by petrographic laboratory methods, such as X-ray diffraction or infrared 
spectroscopy. Clearly, the fundamental goal of an effective transform is to provide a 
close match between normative mineral solutions and modal mineral suites.

The calculation of “normative” minerals from oxide analyses has been a standard 
procedure in igneous petrology since the Cross-Iddings-Pirsson-Washington (CIPW) 
norm was introduced by Cross et al. (1902). These normative minerals are contrasted 
with modal compositions that are commonly measured by point-counting of miner-
als in thin sections of rock. The normative concept has also been extended to sedi-
mentary rocks in attempts to compute realistic mineral assemblages. Krumbein and 
Pettijohn (1938, p.490–492) explained the molecular ratio method to calculate the 
probable mineral composition of a rock, based on chemical analyses of oxide percent-
ages. As a first step, the minerals to be resolved are identified from thin-section ob-
servation or other sources of information. The molecular ratios are then assigned in a 
stepwise fashion to the minerals. The process consists of a logical order of steps that 
first accommodates unique associations between oxides and certain minerals, and 
then allocates the remainder to other components. Imbrie and Poldervaart (1959) 
described a commonly used method of sedimentary normative analysis and then 
compared the results with modal estimates from mineralogy. From a detailed study 
of the Permian Florena shale, they concluded that estimates of the chert, calcite, 
dolomite, and clay had errors of less than 5 percent. However, there was little agree-
ment between the clay-mineral proportions that were computed and those produced 
from X-ray diffraction analysis. Imbrie and Poldervaart (1959) were not surprised by 
this discrepancy, but attributed it to the known high variability of the composition 
of clay-minerals, which is due to isomorphous substitution.

Essentially the same problems are tackled in the computation of sedimentary 
normative minerals when these are based on elements measured by geochemical 
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logs (Herron, 1986). However, many of the older normative methods predated com-
puters. The classical norm calculation is subtractive, deterministic, and rigidly lever-
aged. As discussed by Harvey et al. (1990), the method can be useful when certain 
elements can be assigned totally to single individual minerals. These assignations 
can then be made by following an ordered protocol of analysis to partition them 
between the mineral species. Otherwise, the use of simultaneous equations to link 
mineral compositions with elemental measures is a much more general and powerful 
method. The speed of modern software also allows real-time interaction between 
petrophysicist and machine, so that alternative models can be evaluated quickly and 
decisions can be made that blend mathematical optimality with geological credibility. 
Any analysis should be preceded by some notion of what constitutes a fit-for-purpose 
estimation. Less accuracy is needed if the intent is for a generalized semiquantitative 
description of variation, rather than more rigorous estimates for use in quantitative 
basin modeling or physical property predictions (Harvey et al., 1998).

A model that links minerals with elements can be set up as a fully determined 
system and solved by standard matrix inversion using methods described previously. 
Whenever the components are computed as positive proportions, then the compos-
itional solution is rational and honors the analysis perfectly. However, in common 
with the normative model, any apparent precision read into the result is illusory 
because the determined system makes no allowance for analytical error. It is usu-
ally practical to model a rock with a set of minerals that are fewer in number than 
the elements available from geochemical logging. The system is then overdetermined 
and can be resolved by one or another of a variety of optimization techniques. The 
additional complexity in computation is offset by several distinct advantages. The 
overdetermination allows constraints and error functions to be incorporated, both 
for optimal solution control and for diagnostic evaluation of the sources of analyt-
ical error. The choice of an overdetermined system also provides better assurance of 
a stable solution in situations where the mineral response matrix becomes sparse or 
there are potential compositional colinearities that link some of the mineral subsets 
(Harvey et al., 1990).

Strictly speaking, there will almost always be more minerals than elements that 
can be used to solve for them, so the problem is always underdetermined. However, 
as Herron (1988) noted, the overwhelming majority of sedimentary rocks are com-
posed of only ten minerals: quartz, four clays, three feldspars, and two carbonates. In 
practice, reasonable compositional solutions can be generated using relatively small 
subsets of minerals, provided that they have been identified correctly and that the 
compositions used are both fairly accurate and constant. Alternatively, the inver-
sion procedure can be run as an unconstrained procedure in which components with 
negative proportions are eliminated from the model. Harvey et al. (1998) found this 
approach to be successful but cautioned that negative components should be elimi-
nated one at a time, starting with the largest negative component, because of inter-
actions between the components.

Mineral solutions may be calculated by two alternative strategies. In the first, the 
average chemical compositions of minerals drawn from a large database are used as 
endmember responses and resolved by standard matrix-inversion procedures. This 
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result is normative and generic in the sense that it is based on a sample drawn from 
a universal mineral reference set and applied to a specific sequence where local min-
eral compositions may deviate from the global average. The result is hypothetical 
but has the particular advantage that comparisons can be made between a variety of 
locations and do not require expensive ancillary core measurements. New methods 
of classification may also be necessary, as discussed by Herron (1988) in his study of 
terrigenous sands and shales in terms both of core and geochemical log data.

In a second approach, the solution is calibrated to core data, where laboratory 
determinations of mineralogy and elemental geochemistry are analyzed by mul-
tiple regression techniques to determine local mineral compositions. This result is 
linked to petrography and so is philosophically closer to an estimated modal solu-
tion rather than the more hypothetical normative model. As mentioned earlier, real-
istic statistical calibration models should incorporate error terms from all sources 
of measurement. When geochemical logging was first introduced, several detailed 
studies were made to assess the strengths and limitations of borehole geochemistry 
through exhaustive comparisons with core elemental and mineralogical analyses. 
These included comparisons in the Conoco Research well, Ponca City, Oklahoma, by 
Hertzog et al. (1987); the discussion of the results from an Exxon research well that 
penetrated Upper Cretaceous siliciclastic rocks in Utah, by Wendlandt and Bhuyan 
(1990); and an assessment of data from three Shell wells in the Netherlands, Oman, 
and the United States, by van den Oord (1990).

There are several ways to assess modal mineralogy, so which constitutes the most 
accurate method to use as a standard for determining the real mineral composition? 
Harvey et al. (1998) addressed this problem when they compared core data from the 
spectral measurements of quantitative X-ray diffraction and infrared spectroscopy, 
as well as micrometric analysis from thin-section point counts. Overlapping peaks 
and poor resolution at low-resolution pose special problems for the spectral meth-
ods, while appropriate sample sizes must be observed to produce robust statistics in 
micrometric analysis. Also, the distinction between volume percentage and weight 
percentage must be observed when interrelating modal and normative composi-
tions. Harvey et al. (1998) concluded that the results of their study did not favor 
one method over another, but pointed out that their comprehensive analysis dem-
onstrated the difficulty of obtaining accurate modal estimates and even the notion 
of what constitutes the “real” mineral composition. This is certainly worth bearing in 
mind when making a judgment about the “accuracy” of a normative mineral solution 
from inversion of log responses. So, for example, mismatches in clay-mineral esti-
mates by log inversion in the Dakota formation described earlier represents a failure 
to reproduce the results of quantitative X-ray diffraction, which are themselves only 
estimates of the true composition.

A major obstacle in the production of unique mineral transformations from 
element concentrations has been the problem of compositional colinearity. 
Ambiguities in the separate resolution of illite, mica, kaolinite, and K-feldspar 
by silicon, aluminum, and potassium can be understood when these minerals 
are plotted on a ternary diagram (Figure 4.10). Illite is located at a position that 
is intermediate between K-feldspar and kaolinite. If precisely colinear, then an 
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infinite range of solutions is possible, causing a matrix singularity and a break-
down of the inversion procedure. If average mineral compositions are used, a 
solution becomes possible, but it may be unstable (Harvey et al., 1995). Wend-
landt and Bhuyan (1990) found that the use of silicon, potassium, and aluminum 
tended to result in overestimates of kaolinite; the use of iron to predict illite con-
tent caused underestimates of kaolinite. However, effective discrimination be-
tween illite and kaolinite contents became possible when dry density was applied 
as an extra constraint.

There are numerous potential applications of mineral transforms of geochem-
ical logging data in addition to the immediate quantitative rendition of lithofacies. 
These include quantitative estimates of grain size, cation-exchange capacity, and 
permeability, using the minerals as surrogates for other petrophysical properties 
(Chapman et  al., 1987). Accurate clay-mineral typing and geochemical clues as to 
diagenesis have immediate obvious consequences as tools to improve reservoir en-
gineering practice. Selley (1992) considered that the “third age of log analysis” had 
arrived with the introduction of geochemical logs and that they could be useful dis-
criminators of a variety of diagenetic effects of cementation and solution, especially 
when used in conjunction with other logs.

The analysis of gas-shale compositions presents special challenges, but the 
results have great potential economic significance. The distinction between dif-
ferent clay minerals, as well as the nonclay components of quartz, carbonate miner-
als, and pyrite, adds some complexity to the evaluation of kerogen content and the 
evaluation of adsorbed and free gas. Quirein (2010) noted that it was imperative 
to develop an orderly workflow, hopefully guided by core data, in order to avoid “a 
never-ending journey” and, instead take one of “finite duration.” The most difficult 
aspect is the selection of an appropriate mineral model. An example of the results 
of a compositional analysis from geochemical and other logs of an organic-rich shale 
from a southern Kansas well is shown in Figure 4.11.

K2O

AI2O3 SiO2Kaolinite

Muscovite

K-feldspar

Illite
Quartz

Figure 4.10:  Example of a compositional colinearity problem. From Harvey et al. (1995), cour-
tesy the Society of Petrophysicists and Well Log Analysts (SPWLA).
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INVERSION MAPPING OF COMPOSITIONS

The conventional result of a compositional analysis from simple inversion is equivalent 
to a transformation of log curves into a compositional profile graphed as a function of 
depth. The input vectors of log responses represent zones that are digitally sampled by 
depth. However, instead of vectors sampled vertically along a depth axis, vectors of log 
responses can be input from geographic locations across a stratigraphic unit and the 
compositional results ten interpolated laterally to produce a lithofacies map.

Bornemann and Doveton (1983) described a case study of the application of this 
mapping paradigm to the lithofacies of the Middle Ordovician Viola limestone in 
south-central Kansas. Density, neutron, and sonic logs were used to estimate the pro-
portions of calcite, dolomite, and chert, and the pore volume. The logs were first nor-
malized, based on the results of a trend surface analysis applied to a calibration unit 
(Doveton and Bornemann, 1981). Average normalized log values of the Viola were 
then interpolated between well controls, using a standard automated contouring 
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package. The result of this step was the generation of three grids of average log val-
ues. A particular advantage of this approach is that all three logs are not required in 
any of the wells, because the inverse transformation is applied to the gridded values 
from interpolation, rather than the values at individual well locations.

Dolomite Density

L

Neutron
Sonic

“Unity”

Chert
Calcite

Porosity

GRIDS GRIDS

C−1

–
V
–

= ∗

Figure 4.12:  Composition inversion of density, neutron, sonic logs, and unity areal grids into 
four map grids of mineral components and porosity applied as a grid-to-grid operation in a com-
puter contouring software package.
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Figure 4.13:  Lithofacies map of the Viola limestone in south-central Kansas computed from 
the inversion of grids of average neutron, density, and sonic transit time.
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The matrix algebra inversion procedure was then applied to the three grids sup-
plemented by a grid of unit values. Each cell log-response vector was processed by 
the grid-to-grid operation in the production of four solution grids of the compos-
itional proportions (Figure 4.12). The grid values were combined in a single map that 
is a compositional expression of the lithofacies (Figure 4.13). Each cell was assigned 
a symbol according to whether the dominant component was calcite, dolomite, or 
chert. The map was carefully validated, using standard lithological information avail-
able from drill cuttings and core records. Three additional lithofacies were identified 
as a result of negative proportional solutions at a number of the cell locations. Nega-
tive dolomite and negative quartz were found to have an excellent match with areas 
of residual chert and karstically weathered sections. The association is caused by the 
insensitivity of the sonic measurement to larger pores in these facies. Negative cal-
cite solutions reflected significant occurrences of shale as an additional component 
in shaly carbonate facies.
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CHAPTER 5

Petrophysical Rocks: Electrofacies  
and Lithofacies

FACIES AND ELECTROFACIES

Many years ago, the classification of sedimentary rocks was largely descriptive and 
relied primarily on petrographic methods for composition and granulometry for 
particle size. The compositional aspect broadly matches the goals of the previous 
chapter in estimating mineral content from petrophysical logs. With the develop-
ment of sedimentology, sedimentary rocks were now considered in terms of the de-
positional environment in which they originated. Uniformitarianism, the doctrine 
that the present is the key to the past, linked the formation of sediments in the 
modern day to their ancient lithified equivalents.

Classification was now structured in terms of genesis and formalized in the con-
cept of “facies.” A  widely quoted definition of facies was given by Reading (1978) 
who stated, “A facies should ideally be a distinctive rock that forms under certain 
conditions of sedimentation reflecting a particular process or environment.” This 
concept identifies facies as process products which, when lithified in the subsur-
face, form genetic units that can be correlated with well control to establish the 
geological architecture of a field. The matching of facies with modern depositional 
analogs means that dimensional measures, such as shape and lateral extent, can be 
used to condition reasonable geomodels, particularly when well control is sparse or 
nonuniform. Most wells are logged rather than cored, so that the identification of 
facies in cores usually provides only a modicum of information to characterize the 
architecture of an entire field. Consequently, many studies have been made to pre-
dict lithofacies from log measurements in order to augment core observations in the 
development of a satisfactory geomodel that describes the structure of genetic layers 
across a field.

The term “electrofacies” was introduced by Serra and Abbott (1980) as a way to 
characterize collective associations of log responses that are linked with geological 
attributes. They defined electrofacies to be “the set of log responses which char-
acterizes a bed and permits it to be distinguished from the others.” Electrofacies 
are clearly determined by geology, because log responses are measurements of the 
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physical properties of rocks. The intent of electrofacies identification is generally to 
match them with lithofacies identified in the core or an outcrop. However, corre-
spondences are frequently blurred and care should be taken to select petrophysical 
measurements for the electrofacies model that are most likely to differentiate the 
target set of lithofacies.

An important philosophical distinction between electrofacies and “classical” geo-
logical facies is that electrofacies are primarily observational in origin, and facies are 
traditionally rooted in genesis. Electrofacies can be distinctive empirical log-response 
associations, but whether they reflect depositional environment, diagenetic over-
prints, or other processes requires careful consideration on a case-by-case basis.

DUNHAM TEXTURES AND ELECTROFACIES

The relationship between lithofacies and petrophysical properties that could be used 
to construct a matching set of electrofacies can be illustrated by a simple example. 
The Dunham classification of limestones (Figure 5.1) has been used for many years 
in the textural description of core and outcrop samples and can be related easily 
to analogs of modern carbonate environments. The basic range from grainstone to 
mudstone reflects a decrease in depositional energy and a corresponding increase 
in mud content. Consequently, the first common petrophysical measurement to be 
considered would be the gamma-ray log because of its sensitivity to potassium and 
thorium contents associated with clay minerals. Lucia (1999) was able to distinguish 
mud-dominated packstones, wackestones, and mudstones from grainstones and 
grain-dominated packstones in the San Andres and Grayburg formations by using 
a gamma-ray cut-off of 30 API units, with an 80 percent success rate when matched 
with core descriptions. He cautioned that the computed gamma-ray (potassium and 
thorium sources) should be used rather than total gamma rays, since uranium con-
tent reflects diagenetic effects.

Grain density and porosity are also useful diagnostic limestone fabric indica-
tors, as shown in Figure 5.2, where average values for Lower Permian Chase Group 

Contains mud Lacks mud

Grain-supportedMud-supported

Less than
10% grains

More than
10% grains

MUDSTONE WACKESTONE PACKSTONE GRAINSTONE

Figure 5.1: Basic Dunham textural classification of limestones.
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limestones are plotted for Dunham textural types described in the core. Notice that 
the high-energy, mud-free grainstones have an average grain density close to the 
density of calcite, but they are contrasted with higher grain densities for packstones 
and wackestones, with another sharp increase within mudstones. Differentiation 
within the packstone-to-wackestone trend appears to be linked mainly with a pro-
gressive decline in porosity. Since both of these properties are measured by logs, they 
could be combined with gamma-ray measurements to predict limestone rock fabric, 
utilizing the core observations for specific assignments and associated probabilities.

PETROPHYSICAL RECOGNITION OF LITHOFACIES

So far in this discussion, we have considered facies variation within a single lithology, 
but most analyses will include multiple lithologies in logged sequences. Earlier meth-
ods of lithology differentiation from logs used crossplots as a pattern-recognition 
tool, based on density, neutron porosity, and sonic transit-time measurements. The 
three log responses were reduced to two by elimination of the porosity components 
and computation of matrix properties, either by an M-N plot (Burke et al., 1969) or 
an MID plot (Clavier and Rust, 1976). A major drawback of this log combination in 
both methods was the close correlation between density and transit time for many 
common minerals, leading to ambiguous mineral resolution because of this tendency 
to colinearity. Also, the relative insensitivity of the sonic measurement to larger 
pores, as contrasted with either density or neutron logs, would need to be addressed 
in vuggy or moldic carbonates.
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Figure 5.2:  Average core grain densities and porosities for limestones from the Lower Permian 
Chase Group subdivided between Dunham textural classes.
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The introduction of the photoelectric factor log marked a major advance in 
mineral identification because of its direct relationship with the aggregate atomic 
number and led to the development of the RHOmaa-Umaa plot. The RHOmaa-Umaa 
crossplot utilizes the photoelectric index, neutron porosity, and bulk-density 
curves for matrix mineral evaluation. As with the M-N and MID plots, three 
logs are condensed to two variables through the partition and elimination of the 
pore-fluid component, so that matrix properties are computed as estimates of the 
apparent grain density (RHOmaa) and matrix volumetric photoelectric absorption 
(Umaa).

As a first step, the photoelectric factor, PeF, recorded in barns per electron, must 
be converted to a volumetric measure, U, measured in barns per cc. This conversion 
is made by multiplying by the electron density, ρe:

U PeF
PeF

e
b= ⋅ = +ρ ρ( . )

.
0 1883

1 07

which is more commonly approximated by multiplying by the bulk density:

U PeF b= ⋅ρ

The bulk density, ρb, and the volumetric photoelectric absorption, U, are properties 
of both the matrix and the pore fluid. The elimination of the contribution of the pore 
fluid to these quantities will yield estimates of the apparent density (RHOmaa) and 
photoelectric absorption (Umaa) of the matrix. In order to do these estimations, the 
true volumetric porosity, Φt, must first be interpolated between lithology lines on a 
neutron-density crossplot or be approximated by an average. RHOmaa and Umaa can 
then be calculated as follows. Because:

ρ ρb t f t RHOmaa= + −( )Φ Φ1

then:

RHOmaa b t f

t

=
−( )
−( )

ρ ρΦ
Φ1

and because:

U U Umaat f t= + −( )Φ Φ1

then:
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−
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The density of the pore fluid, ρf, can be taken to be that of the mud filtrate, which will 
be about 1 gm/cc in a fresh water mud. The fluid photoelectric absorption, Uf, will 
also reflect the fluid character of the flushed zone, which for mud filtrate is approxi-
mately 0.5 barns/cc.
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As an example of interrelating electrofacies and lithofacies on a RHOmaa-Umaa 
plot, a logged (Figure 5.3) and cored Chase Group sequence from the Mobil #1-2 
Brown well is shown in Figure 5.4, subdivided between four plots according to the 
rock types identified in the core. Following the earlier discussion in this chapter, 
the cloud of limestone points can be interpreted as facies ranging from grainstones 
to mudstones, and the Chase Group core grain densities shown in Figure  4.2 can 
be applied to discriminate grain-supported from mud-supported limestones. An al-
ternative interpretation that some of these points represent partially dolomitized 
limestones highlights the fundamental limitation of a crossplot, which is that it is 
constrained to two dimensions. The addition of a third dimension introduces more 
information so that, for example, the inclusion of a computed gamma-ray (CGR) log, 
with its sensitivity to clays, would help distinguish whether the cloud dispersion 
reflected potential limestone textural changes, dolomitization, or both. The inter-
pretation of the processes, both depositional and diagenetic, that account for the 
data cloud morphologies of the other lithologies are also various and ambiguous. 
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Figure 5.3:  Gamma-ray, photoelectric factor, density, and neutron porosity logs of a Lower 
Permian Chase Group succession in the Mobil #1-2 Brown well in southwest Kansas.
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Finally and importantly, depth information is lost, although it could be implied 
through the use of an intelligent color scale. So, although the RHOmaa-Umaa plot 
is a valuable tool for pattern recognition, compositional analysis from multiple logs 
plotted with respect to depth is a necessary step forward to encompass all available 
and pertinent information.

With the addition of the computed gamma-ray log, the basic mineral composition 
of the sequence can be estimated by the standard inversion method described in 
the previous chapter (Figure 5.5). The solution is determined and applies RHOmaa, 
Umaa, and CGR values to the resolution of shale, quartz, dolomite, and calcite. On 
the composition profile, the silica component has been partitioned between quartz 
in the siltstone beds and chert within the carbonates, because the log responses 
make no distinction between them. Carbonate zones where no chert appears to be 
present are often marked by distinctive negative silica estimates that are caused 
by occurrences of anhydrite. Accordingly, the system could be expanded in a more 
detailed model, where anhydrite, particularly in small quantities, could be estimated 
by the addition of the sulfur curve from a geochemical log (Cannon and Horkowitz, 
1997). Shale estimates are based on a rather generalized “shale” component, whose 
properties are selected from the log response of shale zones in the sequence, rather 
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than distinctive mineral properties. A more comprehensive analysis would require 
quantitative X-ray diffraction analyses and geochemical logs in an expanded model 
of clay minerals, as discussed in the preceding chapter.

ZONATION BY CLUSTER ANALYSIS

Compositional analysis provides the basis for one method to establish rock-related 
electrofacies in which the sequence is zoned so that composition variability is mini-
mized within the zone, but maximized between adjacent zones.

Given a set of compositional estimates, depth-constrained cluster analysis can be 
applied to segment the sequence into intervals that are as homogeneous as possible 
and as distinct as possible from each other in terms of their composition. Each of the 
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Figure 5.5:  Core lithology classification matched with mineral composition analysis from in-
version of RHOmaa, Umaa, and computed gamma-ray (CGR) values of a Lower Permian Chase 
Group succession in a well in southwest Kansas.
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logs employed is first standardized to zero mean and unit standard deviation before 
clustering in order to ensure that they all have approximately equal weight in the 
analysis. The clustering employs Ward’s method, which, at each step of the process, 
joins the two subintervals that are most alike in a least-squares sense. The process 
applies the analysis-of-variance concept of classical statistics, in that it joins the two 
groups whose merger produces the least possible increase in the total within-groups 
sum of squares. The sum of squares for a single group, k, is given by:

W X - Xk i K
i

nK

=
2

=1
∑

where the squared distances are between the vector of standardized log values for 
data point i, xi, and the vector mean xk for group k. The within-groups sum of squares, 
W, is the sum of the Wk values over all groups. At each step of the clustering pro-
cess, the number of groups is reduced by one, and the within-groups sum of squares 
increases. Depth-constrained cluster analysis only allows vertically adjacent subin-
tervals to be joined, producing a sequence of zone memberships.

By examining a crossplot of the number of zones versus R-squared (the percentage 
of the variance within the zones divided by the total variance of the log values) as a 
“scree plot,” the fundamental subdivisions that account for systematic components 
of the log variability can be assessed. The depths of these zones establish boundar-
ies that identify stratal units. The application of depth-constrained cluster analysis 
for the zone subdivision of a single log was first described by Gill (1970), who later 
extended the method to the simultaneous segmentation of multiple well logs (Gill 
et al., 1993).

The scree plot for the Chase Group compositional-analysis profile is shown in 
Figure 5.6. Breaks in the slope reflect distinctive clustering levels, which can be seen 
more easily on the crossplot as the relative change in R-squared and indicate fun-
damental clustering at partitions of three, sixteen, and twenty-one zones. These 
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Figure 5.6:  Scree and slope plots of variance partitioning by depth-constrained clustering of 
a composition analysis profile from logs of a Lower Permian Chase Group succession in a well 
in southwest Kansas.
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zonations are shown in Figure 5.7, in which the average composition is plotted for 
each zone together with the associated R-squared value, which expresses how much 
of the total compositional variability is accounted for by the zoned profile. The tri-
partite zonal division shows an upper Chase Group section, separated from a lower 
Chase Group by a shale zone, which is the Gage Shale. The zone compositions match 
the general lithological character of the Chase Group as described by Siemers and 
Ahr (1990) as: “the carbonate rocks below the Gage Shale are composed mostly of 
limestone; those above the Gage are dolostones.” In a comparison of this subdiv-
ision with the gamma-ray logs in Figure 5.3, it is interesting to note the differenti-
ation of relatively high uranium in the lower carbonates from lower uranium in the 
upper-zone carbonates, as shown by the separation of the standard gamma-ray (SGR) 
logs from the computed gamma-ray (CGR) logs. The uranium content was specifically 
excluded from the compositional analysis to screen out obvious diagenetic features, 
but the diagenetic overprint may show concordance with the gross compositional 
facies. Luczaj (1998) concluded that uranium mineralization in the Chase Group was 
independent of lithology, but uranium in the upper part was contained in pervasive 
dolomite cements that were a product of regional brine reflux from overlying Late 
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logs of a Lower Permian Chase Group succession in a well in southwest Kansas.
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Permian evaporates, and contrasted with uranium concentrated in the lower section 
that was less well understood and may partly be related to fluid precipitation in frac-
tures such as occurs in the Austin chalk (Fertl et al., 1980).

The finer subdivisions at clusters of 16 and 21 zones pick up stratal divisions 
that match with Chase Group formations and formation subdivisions. When 
depth-constrained clustering is applied to logs at this scale, then the coarser zones 
will match conventional stratal units of groups, formations, and members, so that 
the outcome is one that mirrors conventional subsurface stratigraphy based on logs. 
However, the application of statistics formalizes the boundary picks in a repeat-
able process, and the inversion of the logs to composition provides a more system-
atic base than subtle features of raw log curves that are sometimes chosen in more 
nuanced stratigraphic picks. At a finer scale, and with a judicious selection of log 
and log-transform inputs, the depth-constrained clustering can isolate distinctive 
“electrobeds” that represent occurrences of separate electrofacies. Electrofacies iden-
tification for lithofacies interpretation are described in the next section, where elec-
trofacies are considered as complex log associations rather than as “petrophysical 
rocks” built from log-derived mineral compositions.

THEORETICAL, EMPIRICAL, AND INTERPRETIVE  
ELECTROFACIES METHODS

In the earliest applications of electrofacies, glyphs of “spider webs” and “ladders” 
were used as alternative ways to condense the multilog signature of an electrofa-
cies into two-dimensional graphic forms (Serra and Abbott, 1980). However, glyphs 
are restricted to simple, visual comparisons, and their use reflected the constraints 
of computer technology at the time that they were introduced. In more systematic 
analyses, electrofacies must be mapped in the dimensional framework set by the log 
measurements, of which there are often many so that the nuances of potential elec-
trofacies can be captured. A simple model of an electrofacies can be approximated by 
a cloud of points that are concentrated in the center and diffuse in density outwards. 
A  multivariate normal distribution provides a convenient means to model such a 
distribution efficiently. It also provides the basis for a probability model that allows 
statistical classifications to be made from the electrofacies database.

For many electrofacies, there may be no genetic reason for the data points to 
be normally distributed about their mean. However, they commonly appear to be 
normal, probably as a result of compounded random measurement errors and inde-
pendent systematic deviations. In other cases, obviously asymmetrical shapes can 
be normalized effectively through scale transformations, such as a logarithmic con-
version. Alternatively, extended clouds may be partitioned into smaller clusters if 
they are separated by relatively diffuse regions. If approximately normal, then the 
expected density of points at any coordinate location can be specified completely 
by the statistics of the multivariate mean and the matrix of variances and covari-
ances between the logs. The vector of mean values gives the location of the center of 
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the cloud; the variance-covariance matrix gives its relative degree of dispersion and 
orientation within the multivariate log space.

The multivariate normal cloud is hyperellipsoidal in shape, but has no discrete 
surface because the normal distribution is continuous in all directions. However, 
the shape of the distribution ensures that the majority of points are confined to 
within a few standard deviations of the cloud centroid. Many representations of the 
normal ellipsoid set the 95 percent probability contour as an outer boundary to the 
cloud. Beyond this surface, any point has a rapidly decreasing likelihood of being 
drawn from the ellipsoid population. The situation can be visualized fairly easily in 
two dimensions (Figure 5.8), and the geometrical concepts are equally applicable to 
higher dimensions.

As an example of the development of an early electrofacies database, Delfiner 
et  al. (1987) compiled log-response parameters for thirty sandstones, twenty-five 
shales, thirty limestones, twenty-five dolomites, twenty-five evaporites, three coals, 
ten igneous rocks, and four miscellaneous rocks. Local databases can be designed to 
include unusual lithologies and to fine-tune electrofacies parameters to specific rock 
types. So, for example, Stowe and Hock (1988) developed a Zechstein database for 
applying classification procedures to the Permian gas-bearing formations in north-
ern Germany. Their Zechstein reference set consisted of electrofacies for forty-eight 
carbonates and twenty-four evaporites (Figure 5.9). Delfiner et al. (1987) described 
three different methodologies for the design of an electrofacies reference data-
base: theoretical, empirical, and interpretive approaches. In practice, the database is 
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Figure 5.8:  Representation of hypothetical electrofacies by 95 percent density contour of a bi-
variate normal ellipse plotted with reference to two logs set as orthogonal axes. From Doveton 
(1994), © 1994 American Association of Petroleum Geologists (AAPG), reprinted by permission 
of the AAPG, whose permission is required for further use.
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built using all three procedures as a mix of predictions from tool-response equations 
and interpretations from crossplots integrated with core observations.

The theoretical approach to electrofacies definition is that of forward modeling, 
which was reviewed in detail by Quirein et al. (1986). While the determined-system 
solution of compositional proportions is obtained by inversion of the log-response 
equations, the forward model is the reverse of this process. The log responses of an 
electrofacies are predicted by multiplying its component log properties by the pro-
portions with which they occur in an equivalent lithofacies:

CV = L

where C is the matrix of component properties, V is the vector of component pro-
portions within the lithofacies, and L is the vector of electrofacies log responses. 
The lithofacies compositions can come from a variety of sources, such as general-
ized estimates from sedimentary geology textbooks (e.g., Pettijohn et al., 1972) and 
be convolved with mineral logging parameters (such as those listed in Edmundson 
and Raymer, 1979). Alternatively, electrofacies can be created from local lithofacies 
determined by core analyses or based on other sources of geological information. 
These customized electrofacies accommodate local variability, and the added pre-
cision inspires more confidence in the results of subsequent classifications. In all 
cases, the analysis ranges, porosity distributions, accessory-mineral influences, and 
data-acquisition errors are incorporated in the computation of descriptive normal 
ellipsoids. The process that underlies the theoretical type of electrofacies can be seen 
to be deductive and model driven.

The empirical approach relates lithofacies observed in core to the set of log 
responses measured over the cored interval. The log-response statistics of means, 
variances, and covariances then describe hyperdimensional ellipsoids for each elec-
trofacies and are tagged to a specific lithofacies. This process of creation can be 
viewed as inductive, but supervised. The major drawback to this approach is eco-
nomic, because of the costs incurred by coring long sections and matching observed 
responses logged by a full suite of tools.
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Figure 5.9:  Density-neutron crossplot of Zechstein carbonate electrofacies. From Stowe and 
Hock (1988), courtesy the Society of Petrophysicists and Well Log Analysts.
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The interpretive approach to electrofacies generation is based on the examin-
ation of log crossplots for clusters that can be identified geologically or validated by 
cores or cuttings. On each cluster, an ellipse is circumscribed that is set by the range 
on each log and the log-pair correlation coefficient for the cluster. Histograms and 
Z-plots are also used for the location of ellipse boundaries (Delfiner et al., 1987). 
However, in practice, the edge of an ellipse is usually chosen to be an informal esti-
mate of the 95 percent probability density contour. Crossplots for all possible pairs 
of logs are examined to determine the parameters of the multivariate ellipsoid.

Serra and Abbott (1980) stressed that an important prior step to the generation 
of log crossplots was the segmentation or blocking of the original logs. As a result, 
data sampled from curve features that were transitions between electrobeds would 
be eliminated, while electrobed measurements would be retained. This procedure 
trims much of the diffusion from the data clouds and improves the discrimination 
of the electrofacies. The interpretive approach can be highly labor intensive if the 
electrofacies are built by examining all possible crossplots. For example, using five 
logs, Stowe and Hock (1988) analyzed some 4,500 crossplots in the construction 
of a Zechstein carbonates database of seventy-two electrofacies. The number of 
crossplots is partly contingent on the number of logs and can be calculated as the 
number of combinations of n  logs, taken a pair at a time:

N
n

n
=

−( )
!

! !2 2

For five logs there are ten possible crossplots, which represent ten alternative and 
orthogonal views of the hyperdimensional data clouds. If the number of logs is 
expanded to eleven, then the total set of crossplots expands dramatically to fifty-five. 
This problem was commented on briefly by Serra et al. (1985), who bluntly called it 
“the curse of dimensionality.” On one hand, a sufficient number of logs is required to 
distinguish between electrofacies with minimal ambiguity. On the other hand, the 
multidimensional space created by a large number of logs becomes difficult to handle 
by traditional methods.

PRINCIPAL COMPONENT ANALYSIS (PCA) OF ELECTROFACIES

Wolff and Pelissier-Combescure (1982) described a strategy to circumvent this 
dilemma through the use of principal component analysis (PCA) to condense the high 
dimensionality introduced by multiple logs. Although the locations of data points in 
multilog space collectively delineate clouds with the same number of dimensions as 
logs, they can often be mapped effectively in a much reduced dimensionality. This is 
because intercorrelations between the log variables cause the clouds to be extended 
along certain trends. Principal component analysis computes an ordered set of or-
thogonal axes that absorb the variation in a systematic manner. As implemented in 
the method described by Wolff and Pelissier-Combescure (1982), the clustering is 
run in two phases. In the first phase, the clustering is used to isolate local modes as 
zonal representatives of the digital data. In the second phase, the local modes are 
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agglomerated into clusters that are equated with electrofacies. Decisions concerning 
potential cluster subdivision or fusion are monitored by referral to geological infor-
mation from the core or from geological experience. The method was implemented in 
the 1980’s as the Schlumberger computer-processed log product of Faciolog, and an 
example is shown in Figure 5.10 for a section of the Chase Group.

FACIES 6 TOWANDA
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FACIES 13

Figure 5.10: Faciolog (1983) presentation of facies predictions from spectral gamma-ray, photo-
electric factor, density, sonic, and neutron porosity logs of a Chase Group (Lower Permian) sec-
tion in Amoco #1 Hayward, southwest Kansas.
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Computation of the principal components is simply a geometric rotation in 
multidimensional space that locks onto the orthogonal axes of relative elongation 
in a cloud of data points. If m log responses from a sequence of zones are plotted as 
points in a space with mutually orthogonal axes, they form a cloud in m-dimensional 
space. The raw data cloud is modeled by a single hyperellipsoid, whose center is at 
the multivariate mean value, and inflation is characterized by the variances and 
covariances of the measurement variables. Principal components are the eigenvec-
tors of this cloud, computed to locate the major axes in order of importance based 
on their associated eigenvalues, and they reflect systematic relationships between 
the logs. These axes provide a new framework of reference that is aligned with the 
natural axes of the cloud (“eigen” is German for “intrinsic”), rather than the original 
log-measurement axes. The orientations of the principal components are computed 
from either the covariance or correlation matrix of the zone-log data. The correlation 
matrix is the more common choice, because most logs are recorded in radically dif-
ferent units. In order to avoid artificial and undue weighting by any of the logs, the 
original data should be standardized to dimensionless units by subtracting the mean 
and dividing by the standard deviation. The covariance matrix of standardized data 
is the correlation matrix. A simple depiction of the basic geometrical concept of this 
procedure is shown in Figure 5.11.

A compression of dimensionality is made possible because the components 
are based on the intercorrelations between the variables. The total variance of the 
original set of m variables is the sum of their separate variances. This quantity is 
absorbed by m possible principal components. In practice, many measurement vari-
ables show a significant degree of intercorrelation, and principal component analysis  
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Figure  5.11: Principal-component axes of a hypothetical electrofacies data cloud of points 
(Figure 5.8) reference to two logs set as orthogonal axes. From Doveton (1994), © 1994 
American Association of Petroleum Geologists (AAPG), reprinted by permission of the AAPG, 
whose permission is required for further use.
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highlights the amount of information redundancy within the logs. If the majority of 
the variability is picked up by p principal components, then the dimensionality has 
been shrunk from m to p. The collapse reflects the dimensionality of the information 
content of the variables as a replacement for the original reference framework. It is 
not uncommon for the first two principal components to account for most of the 
variability, thus a multilog dataset can be mapped on a crossplot with little loss of 
information.

The derivation of the principal components follows from a property of matrix 
algebra that a symmetric, nonsingular matrix, S, can be converted into a diagonal 
matrix, L, by multiplying by an orthonormal matrix, U, through the following 
equation:

U SU = LT

where T signifies the transpose of a matrix. If S is the covariance matrix, then the 
conversion to a diagonal matrix is the geometrical equivalent of a rotation of the ori-
ginal axes to new descriptive axes. A diagonal matrix has zeroes in the off-diagonal 
elements, which means that the new axes are independent of one another. The values 
of the diagonal elements register the eigenvalues of the principal components that 
express their variances. The sum of these eigenvalues is then the same as the sum of 
the variances of the original variables. The relationship gives an immediate measure 
as to how much variability is assigned to each principal component. The numbers 
are particularly easy to follow when the correlation matrix is selected. The variance 
of each variable is then unity, and the total variability equals m (the number of vari-
ables). Each eigenvalue divided by m is the proportion of a principal component’s 
share of the total variability.

The fact that U is an orthonormal matrix leads to the useful result that the inverse 
of U is the same as the transpose of U. This means that both the transformation from 
the measurement space to the principal-component space and the reverse mapping 
are variations of the same operation. The matrix U contains the loadings that relate 
the eigenvectors to the original variables. The location of any point within the data 
cloud can be related to the principal-component axes by the transformation:

Z =U XT

where X is a vector of the zone log responses and Z is a vector of the 
principal-component scores. This means that the score of the ith zone on the pth 
principal component is given more simply by:

z u x u x u xpi p i p i mp mi= + + ⋅⋅⋅ +1 1 2 2

where the u coefficients are loadings from the pth principal component. The original 
variables can be recovered from the principal-component scores through the inverse 
of this procedure:

X = UZ
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So, the gth log response of the ith zone can be computed by the equation:

x u z u z u zgi g i g i mp mi= + + ⋅⋅⋅ +1 1 2 2

The loadings of the U matrix summarize the relationships between the log variables 
and the principal components. Consequently, they can often be “read” for their geo-
logical or petrophysical meaning. In the eigenvector analysis of the correlation struc-
ture of log relationships, the principal components will often reveal these properties 
implicitly. Common sense must be used in such interpretations. The computation of 
principal components is simply a geometrical operation that relocates the reference 
axes to the apparent axes of elongation of the data cloud. The preceding explanation 
only covers the bare bones of the mathematics of principal component analysis. The 
ideas and further ramifications are best understood by consideration of a case-study 
example.

Principal component analysis is a standard option on almost all statistical soft-
ware packages, so that pioneering work on applications to electrofacies analysis can 
be made easily on a personal computer and tailor-made to local geology, as shown 
in the following case-study. Here we apply the interpretive approach to the isolation 
of distinctive clusters as separate electrofacies in multivariate log space, followed 
by the assignment of these electrofacies to matching lithofacies. The Chase Group 
shows a distinctive cyclic depositional pattern that has been extensively studied and 
described because it is the host for the Hugoton field, which is the largest onshore 
gas field in North America. A characteristic Chase Group cyclothem was described by 
Caldwell (1991) as being initiated by a transgressive gray siltstone and sandstone, 
followed by transgressive mudstones, wackestones, and packstones, which then 
coarsen upwards into regressive packstones and grainstones, before terminating 
with regressive reddish-brown mudstones, siltstones, and sandstones, with desicca-
tion features. This basic model provides a useful genetic framework in the interpret-
ation of electrofacies and their sedimentological implications.

The target interval of the case study is the Towanda Limestone, Holmesville Shale, 
and Fort Riley Limestone (Chase Group) subsection of the Chase Group in the Amoco 
#3HI Montgomery well (Figure 5.12). This matches a lower interval of the Chase 
Group in the Mobil #1-2 Brown well (Figure 5.3) and coincides with the section in the 
Amoco #1 Hayward well, used as an example of a Faciolog output (Figure 5.10). The 
basic elements of the cyclothem model described by Caldwell (1991) can be deduced 
from the log curves of Figure 5.12, but the purpose of the principal component ana-
lysis is to dig deeper, in the recognition of textural classes within the carbonates and 
sedimentological variability in the clastics. With these goals, the selection of logs 
and computed logs is a crucial initial step, so that emphasis is placed on variables 
that are most likely to reflect depositional controls, as contrasted with those that are 
likely to be linked with diagenetic overprints. With this in mind, the log-response 
variables of apparent matrix density (RHOmaa), matrix volumetric photoelectric 
absorption (Umaa), total porosity (PHIt), thorium (THOR), and potassium (POTA) 
were extracted from the spectral gamma-ray, photoelectric factor, density, and neu-
tron porosity curves as suitable measures for electrofacies discrimination.
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A correlation-coefficient matrix was computed as the first step in principal compo-
nent analysis (Table 5.1). The relatively high values (both positive and negative) are 
clear indications of information redundancy and that much of the variability in five 
measurement dimensions can probably be absorbed by a few principal components. 
A reading of the correlation interrelationships shows a thorium-potassium-porosity 
association related to clastic zones and contrasted with negative correlations against 
matrix volumetric photoelectric absorption, which reflects carbonate occurrence. 
The results from a principal component analysis provide a much expanded interpret-
ation from this preliminary assessment of pairwise variable interrelationships. The 
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Figure  5.12:  Gamma-ray, photoelectric factor, density, and neutron porosity logs of the 
Towanda limestone, Holmesville shale, and Fort Riley limestone (Chase Group) in the Amoco 
#3HI Montgomery well in southwest Kansas.
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eigenvalues and eigenvector loadings (Table 5.2) show that the first two principal 
components account for 88 percent of the total variability, so that when used as axes 
of a crossplot (Figure 5.13), almost all of the input log information is preserved on 
this two-dimensional condensation. The plot shows two distinct electrofacies clouds, 
which are separated primarily by the first principal component. The eigenvector load-
ings show the cloud with positive scores to be clastics (higher thorium, potassium, 
and porosity), and the cloud with negative scores to be carbonates (higher matrix 
volumetric photoelectric absorption).

It should be noted that the principal components of a correlation matrix are com-
puted as the eigenvectors of a single multivariate normal ellipsoid centered at the 
origin. However, in this style of application, the primary purpose is to distinguish 
between several electrofacies' data clouds. Consequently, the first few principal com-
ponents will tend to be located to absorb the maximum variability between the data 

Table 5.1. CORREL ATION-COEFFICIENT MATRIX OF APPARENT MATRIX DENSITY 

(RHOMa a), MATRIX VOLUMETRIC PHOTOELECTRIC ABSORPTION (UMaa), TOTAL 

POROSITY (PHIt), THORIUM (THOR), AND POTASSIUM (POTA) FOR THE CHASE 

GROUP SECTION IN THE AMOCO #3HI MONTGOMERY WELL

Rhomaa Umaa Phit Thor Pota

RHOMAA 1.00 −0.51 0.53 0.67 0.68

UMAA −0.51 1.00 −0.66 −0.75 −0.76

PHIT 0.53 −0.66 1.00 0.82 0.83

THOR 0.67 −0.75 0.82 1.00 0.89

POTA 0.68 −0.76 0.83 0.89 1.00

Table 5.2.  EIGENVALUES, VARIANCES, AND LOADINGS OF PRINCIPAL COM-

PONENTS REFERENCED TO APPARENT MATRIX DENSITY (RHOMaa), MATRIX 

VOLUMETRIC PHOTOELECTRIC ABSORPTION (UMA a), TOTAL POROSITY (PHIt), 

THORIUM (THOR), AND POTASSIUM (POTA) FOR THE CHASE GROUP SECTION IN 

THE AMOCO #3HI MONTGOMERY WELL

Principal Components

1 2 3 4 5

RHOMAA 0.387 −0.879 0.101 −0.255 0.050

UMAA −0.426 −0.354 −0.793 0.250 −0.048

PHIT 0.448 0.311 −0.575 −0.605 0.072

THOR 0.482 0.061 −0.137 0.592 0.628

POTA 0.485 0.043 −0.110 0.394 −0.772

Eigenvalue 3.86 0.53 0.35 0.15 0.10

Variance % 77.2 10.5 7.1 3.1 2.1

Cumulative variance % 77.2 87.8 94.9 97.9 100.0
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clouds before accounting for the variability within the clouds. It would be tempting 
to believe that the principal components with the largest eigenvalues account for 
the largest discrimination between data clouds, but this is not always the case, as 
demonstrated both mathematically and by simulation (Chang, 1983). It is therefore 
important to couple the assessment of the eigenvalues with the potential petrophys-
ical meaning of the eigenvector loadings as a guide to electrofacies differentiation. In 
a more detailed analysis, principal components can then be applied to each electrofa-
cies. This extension was discussed by Brandsegg et al. (2010), who suggested that, 
since principal component analysis of long logged sections mixed variability between 
and within lithologies, subsets of fairly uniform lithologies should be analyzed sep-
arately, in a procedure they termed “structured principal component analysis.” As 
a result, small-scale variability could be captured that was masked by unstructured 
PCA. Essentially, structured PCA honors the descriptive model of a multivariate 
normal ellipsoid. In the Chase Group example, the two electrofacies could be mod-
eled separately by principal component analysis. However, as can be seen on the 
principal component (PC) scores crossplot (Figure 5.13), the first principal axes 
would be subparallel to the second principal component of this analysis. The load-
ings of the second principal component therefore reflect the major variability within 
both electrofacies, keyed most strongly to changes in matrix density.

A depth plot of PC score logs for the first two principal components (Figure 
5.14) shows the fundamental partition between clastics and carbonates on the first 
component, while the second component score log is keyed mainly to increases in 
matrix density within each facies. Depth-constrained clustering was applied to the 
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Figure 5.13:  Crossplot of scores of first two principal components computed from log vari-
ables of the Towanda limestone, Holmesville shale, and Fort Riley limestone (Chase Group) in 
the Amoco #3HI Montgomery well in southwest Kansas.
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principal-component score logs and twelve distinctive electrobeds selected for fur-
ther interpretation. Notice that the isolation of electrobeds was performed after the 
principal component analysis in this case study, rather than segmentation of the 
original logs as the initial step. This is because the depth-constrained clustering will 
differentiate systematic zones with the suppression of transitional curve features. 
However, essentially the same result would occur if depth-constrained clustering 
was applied to the input log variables prior to PCA, although a sufficiently fine zon-
ation would be needed to generate viable correlation coefficients.

By plotting the electrobed principal-component scores on a crossplot (Figure 
5.15), the electrobeds can be aggregated into electrofacies subdivisions that pick up 
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Figure 5.14:  PC score logs of first two principal components subdivided into electrobeds by 
depth-constrained clustering of the Towanda limestone, Holmesville shale, and Fort Riley lime-
stone (Chase Group) section in the Amoco #3HI Montgomery well in southwest Kansas
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textural, mineralogical, and pore-volume changes. The next step is transcription, 
that is, to assign lithofacies equivalents to each of the clusters. Essentially, we are 
looking for the lithofacies synonym of the electrofacies. Generalized interpretations 
are generally easy to make, but assignations that are locked into local core observa-
tions and measurements are clearly preferable. In Table 5.3, the mean values of the 
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Figure 5.15:  Crossplot of scores of first two principal components with electrobed locations 
and electrosubfacies labeled for clastic and carbonate electrofacies of the Towanda Limestone, 
Holmesville shale, and Fort Riley limestone (Chase Group) in the Amoco #3HI Montgomery 
well in southwest Kansas.

Table 5.3.  MEAN VALUES OF LOG RESPONSES IN CARBONATE AND CL ASTIC 

ELECTROSUBFACIES MATCHED WITH ELECTROBED ZONES OF THE TOWANDA 

LIMESTONE, HOLMESVILLE SHALE, AND FORT RILEY LIMESTONE (CHASE GROUP) 

IN THE AMOCO #3HI WELL IN SOUTHWEST KANSAS.

Average Log Response

Facies Zone Rhomaa Umaa Phit Thor Pota Interpretation

C1 10 2.69 13.1 12.5 1.7 0.22 GST

C2 2 2.72 13.6 9.5 2.0 0.38 PKST-GST

C3 11 2.75 12.0 8.1 1.9 0.25 WKST-PKST

C4 9 2.77 12.6 10.5 2.3 0.43 WKST-MDST

C5 12 2.79 11.5 10.3 2.6 0.72 MDST-WKST

C6 1 2.80 13.0 9.0 2.4 0.42 AN-LS

S1 4&7 2.77 7.8 17.8 7.0 1.78 CSLTST

S2 3 2.80 8.9 13.0 5.2 1.42 SLTST

S3 6&8 2.83 8.9 18.4 7.9 2.15 SHSLTST

S4 5 2.94 9.8 24.1 11.0 2.66 SLTY-SH
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carbonate and clastic subfacies are shown and ranked with respect to apparent matrix 
density, the strongest loading on the second principal component that is keyed to 
variation within the clastic and carbonate electrofacies. Grain-density and porosity 
measurements from a large Chase Group core database (Figure 5.2) were used for 
interpretative lithofacies transcription. The carbonate subfacies were assigned tex-
tural equivalents within the grainstone to mudstone range and a discrimination of an 
anhydritic limestone. Increases in apparent matrix density within the clastic electro-
facies was matched by increases in potassium and thorium contents, reflecting finer 
grain sizes and increasing clay contents in the coarse siltstone to silty shale range.

The final interpreted electrofacies log from principal component analysis and 
depth-constrained clustering (Figure 5.16) is drawn to conform loosely with graphic 
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#3HI Montgomery well in southwest Kansas.
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profiles commonly used to record lithologic observations made from core. By way of 
comparison, a core description and sequence stratigraphic interpretation of the core 
from this well (Winters, 2007) serves both as a validation test and useful insight on 
visual assessments and petrophysical measurements (Figure 5.17). The basic Chase 
Group cyclothem of Caldwell (1991) described earlier has been studied in more detail 
by Dubois et al. (2006), who integrated detailed petrophysical analysis and core stud-
ies as contributory elements to the development of a regional geomodel. Used in that 
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Kansas. After Winters (2007).
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sense, comparison between electrofacies and core description is not a competitive 
process to judge which is most “correct.” Instead, the appropriate philosophy is one 
of a collaborative integration, in which features observed visually are augmented by 
petrophysical measurements, and vice versa. The final synthesis provides a learning 
experience about genetic rock properties and how they relate to petrophysics, but, 
importantly, they provide a more sophisticated prediction model to apply in wells 
that are logged but not cored.

Clearly, this case study represents a labor-intensive effort that would be unreal-
istic to apply to the evaluation of a large field. However, most systematic field studies 
identify a small number of key wells characterized by extensive core and full suites of 
modern logs that are used as the touchstones for field characterization. It is in these 
wells that studies of this kind are particularly useful. The unsupervised approach allows 
the recognition of distinctive electrofacies whose lithofacies equivalents have not yet 
been recognized in the core; the core validation tests whether observed lithofacies are 
recognized by electrofacies or whether analysis should be repeated with the incorpor-
ation of new log variables. In the process, a keener understanding of the relationships 
between petrophysics and the geology of the field are gained, with an improvement in 
predictive power and modeling on turnkey processing from generalized electrofacies 
databases. Once a satisfactory electrofacies model has been developed and validated 
from the key wells, prediction methods utilizing probability can then be applied to the 
bulk of the field wells in an efficient manner, as described in the next section.

CLASSIFICATION BY A PARAMETRIC ELECTROFACIES DATABASE

If a comprehensive parametric electrofacies database is established that links all 
available core observations of lithofacies to their associated logs, then it can be 
used as a means to classify zones, based solely on their log responses. The problem 
becomes that of allocating a multivariate coordinate location to one or another of a 
number of electrofacies hyperellipsoids. Because these hyperellipsoids are located at 
their multivariate log means, and their shape and orientation are specified by their 
multivariate covariances, the database is parametric, that is, defined by the param-
eters of means and covariances. The effective boundaries of the hyperellipsoids are 
commonly set by 95 percent density contours. This convention is a simple way to 
illustrate what are really diffuse clouds of points and allows their graphical display 
on log crossplots for inspection by petrophysicists (e.g., Figure 5.9). The diffused 
density of the hyperellipsoids in all directions means that the allocation of a zone to 
any electrofacies is a matter of probability.

The multivariate normal distribution associated with each electrofacies is infinite 
in all directions, although realistic probability contours are more localized around 
the electrofacies centroid. Consequently, all zone log-response coordinates have a fi-
nite probability of belonging to any of the electrofacies. The probability of observing 
a set of log responses, L, given an electrofacies i, is symbolized as:

P L Fi( )
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and is given by the normal probability distribution structure of the ith electrofacies 
hyperellipsoid. But the actual problem is the reverse: What is the probability of being 
a product of electrofacies i, given a set of log responses, L? This posterior probability, 
P(Fi/L), is given by Bayes’ theorem as:

P F L
p P L F
p P L Fi
i i

j j

( / )
( / )

( / )
= ⋅

⋅∑
where pi  is the prior probability of electrofacies i.

The prior probabilities are determined by geological experience and are an im-
portant means for excluding lithologies that do not occur in the analytical sequence, 
or for weighting electrofacies that occur particularly commonly. The prior probabili-
ties can be based on frequency of occurrence observed in core and outcrop studies 
or expressed as likelihood from judgments formed from observations of rocks or 
modern depositional analogs. With no prior information, equal prior probabilities 
can be assigned to all reasonable electrofacies. Posterior probabilities of zero value 
are an immediate means to extract a subset of relevant electrofacies from a large 
database and thus to speed computations. The classification step follows from the 
computation of the posterior probabilities, with electrofacies assignment dictated by 
the maximum probability value. The probability figure gives the degree of confidence 
associated with the classification decision. In cases where the zone falls outside the 
95 percent limits of all electrofacies ellipsoids, the zone is normally considered to be 
“unidentified.”

SUPERVISED ELECTROFACIES ANALYSIS METHODS

An electrofacies analysis that is given no prior information concerning group mem-
bership of individual observations is an “unsupervised” approach, where trends and 
clusters that are perceived in petrophysical measurements are subsequently assigned 
geological meaning. This inductive philosophy “allows the data to speak for them-
selves” and operates from the “bottom-up,” because the analysis originates with the 
observational data rather than being driven top-down by a deductive model. Advan-
tages include the element of surprise, in that new associations may be revealed that 
represent useful information to augment the current geological model. A common 
disadvantage in complex lithologies is that multiple and competing interpretations, 
both real and unrealistic, may create a seeming wilderness of mirrors with the risk of 
bewilderment rather than meaningful geological insight.

In a “supervised” method, different categories or groups are specified before the 
analysis; the goal of the method is to find the best function to distinguish the cat-
egories, based on the characteristics of the data. Subsequently, the function can be 
used to classify unknown observations on the basis of likelihood of membership in 
one or another of the groups. In this case, lithofacies are identified in the core and 
linked with log data from a cored well as a “training set,” from which a multivariate 
statistical method can “learn” the relationships between logs and core lithofacies. 
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A  satisfactory classification function can then be applied to the analysis of other 
wells that have been logged but not cored. The success of the classification func-
tion must first be assessed in the training well, by matching lithofacies occurrence 
with log prediction. Particular attention should be paid to differentiating lithofacies 
with a high prediction success rate from those that are difficult to discriminate. The 
transcription between lithofacies and electrofacies is not necessarily one of exact 
correspondence because they are based on separate criteria of visible descriptions 
and invisible properties. Because the match of prediction to observation within the 
training well is recursive, an independent verification of predictive success should 
be made in a “validation well” that supplies both core observations and log measure-
ments. If the validation phase is satisfactory, then the classification method can be 
applied to logged but uncored wells for predictions that are tagged with their associ-
ated probabilities of correct assignation.

ELECTROFACIES CLASSIFICATION BY DISCRIMINANT  
FUNCTION ANALYSIS (DFA)

The most commonly used supervised parametric method for probabilistic classi-
fication of unknown observations between groups is discriminant function ana-
lysis (DFA). Discriminant analysis covers a wide range of techniques aimed at the 
classification of unknown samples to one of several possible groups or classes. 
Classical discriminant function analysis has the tighter focus of attempting to 
develop a linear equation that best differentiates between two different classes. 
Fisher (1936) first derived the linear discriminant function as a statistical 
method to separate two populations by a weighted linear function of their meas-
urement variables. The method is a supervised technique that requires a train-
ing data set for which assignments to the two populations are already known. 
The data consist of multivariate values for every individual in both population 
samples. If the two groups were plotted in multidimensional space, they would 
appear as two clouds of data points with either a distinctive separation or some 
degree of overlap. An axis is located on which the distance between each cloud 
is maximized, while the dispersion within each cloud is simultaneously mini-
mized. This axis defines the linear discriminant function and is calculated from 
the multivariate means, variances, and covariances of the two groups. The data 
points of the two groups may be projected onto this axis as locations on a single 
line. This operation results in the collapse of the many variable dimensions of 
the recorded data into a single, composite variable that best discriminates be-
tween the two groups.

The discriminant function is then the equation of the axis that cuts obliquely 
across the crossplot at an angle determined by the relative contribution of the vari-
ables to the discrimination. In the computation of the function, the two clouds are 
modeled by multivariate normal distributions whose probability density contours 
map out hyperellipsoids. This is the same representation used in the electrofacies 
data banks described previously.
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The equation of the discriminant function, Z, is:

Z X X Xm m= + + ⋅⋅⋅ +λ λ λ1 1 2 2

where X1 to Xm are the m variables used for discrimination and λ1 to λm are the 
weighting coefficients to be applied to each of the m variables. The optimum discrim-
inant function is set at the location that maximizes the value of the distance between 
the cloud centroids divided by the dispersion of the two clouds. This condition occurs 
when the following equation is satisfied:

S DΛ =

where S is a matrix of pooled variances and covariances from the two groups, Λ  is a 
vector of the unknown λ coefficients to be solved, and D is a vector of the differences 
between the means of the two groups with respect to the m variables.

Multiple discriminant analysis (or canonical discriminant analysis) is a multi-
group extension of linear discriminant analysis for two groups. Instead of comput-
ing a single discriminant function, a solution is made for multiple functions that are 
orthogonal to each other. The first function locates the axis where the distances be-
tween the group centroids is maximized and the discriminant scores about the group 
means are minimized. The second function is orthogonal to the first and represents 
the second most powerful discriminator axis. The remaining functions account for 
successively lower discriminations. A schematic representation of the multiple dis-
criminant process is shown in Figure 5.18. When observations are classified with 
respect to one or another of the groups, the assignment can be made in terms of 
probability, using a Bayesian estimation from the discriminant scores in conjunction 
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Figure 5.18:  Schematic picture of multiple discriminant analysis applied to the differentiation 
of groups G, H, and I, in terms of variables X1, X2, X3, with location of new axes Y1 and Y2, from 
analysis of within-groups sums of squares (SSW) and between-groups sums of squares (SSB).
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with a prior probability. The prior probability is conventionally chosen to be either an 
equal probability for all groups or the probabilities that correspond to the proportion 
of the observations in the total sample that are supplied by each group.

Logs (Figure 5.3) and core lithology assignments (Figure 5.4) of a Chase Group 
section from the Mobil #1-2 Brown well can be used as a demonstration of the appli-
cation of multiple discriminant analysis, There are four lithologies (shale, siltstone, 
dolomite, and limestone) in this training well. By using the log measurements of 
RHOmaa (apparent grain density), Umaa (apparent matrix bulk photoelectric ab-
sorption), PHIT (average of the neutron and density porosities), THOR and POTA 
(thorium and potassium, respectively, from the spectral gamma-ray log) that were 
applied in the principal component electrofacies analysis, instructive comparisons 
can be drawn between the two approaches. A tally matrix of lithology predictions in 
the training well are shown in Table 5.4, based on maximum probability estimated 
from scores computed from multiple discriminant analysis. The statistics suggest 
that shale and dolomite are most easily discriminated and limestone predictions are 
weaker than might be expected, but limestone misclassifications are influenced by 
chert content and some dolomitization. The variety of cements, accessory minerals 
and compositional variability of the siltstones account for their broad spread of pre-
dictive assignments.

Results of the application of the training discriminants to logs in the validation 
well of Amoco #3HI Montgomery are shown as a probability profile and lithology 
assignment column in Figure 5.19. The probability profile can be considered from 
two perspectives. First, a zone may be thought of in probability terms as to the like-
lihood of any zone being one or another of the lithologies. Alternatively, the prob-
abilities associated with a zone may be viewed as proportions of the endmembers. 
So, for example, a zone with equally high probability of being either a siltstone or a 
shale, may simply be a silty shale (or a shaly siltstone). In this sense, the probabili-
ties for each zone characterize lithofacies that, if valid, are a truer rendition of the 
continuous variability of lithofacies expressed by the log measurements than the 
categorical assignment to one or another of the lithologies. The observations from 
the core interpretation of this section of the prediction well shown in Figure 5.17 

Table 5.4.  TALLY MATRIX OF LITHOFACIES PREDICTIONS IN THE CHASE GROUP 

TRAINING WELL MOBIL #1-2 BROWN BASED ON MULTIPLE DISCRIMINANT 

ANALYSIS. SH  = SHALE; SLT  = SILTSTONE; DOL = DOLOMITE; LS = LIMESTONE; 

(BROKEN)  = MISSING CORE

PREDICTED

SH SLT DOL LS

OBSERVED

SH 60 10 0 1

SLT 7 42 19 10

DOL 1 8 94 12

LS 0 20 11 66

(BROKEN) 0 0 2 1
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show good concordance with the discriminant predictions. Of particular interest is 
the apparent subdivision of the Holmesville Shale by the discriminant predictions 
into an upper part dominated by siltstones, from a lower part which is classified 
primarily as shale. This character matches core observations of variegated siltstones 
and shaly siltstones interpreted as lowstand deposits, succeeded by very fine-grained 
sandstone and siltstone of transgressive clastics.
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Figure 5.19:  Multiple discriminant analysis prediction of lithofacies as probability (left) and 
assignment (right) in the Amoco #3HI Montgomery prediction well.
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NONPARAMETRIC DISCRIMINANT ANALYSIS

Both the supervised and unsupervised methods described up to this point have been 
parametric. In other words, the discrimination has been made in terms of parameters 
that summarize the distributions, rather than the original data clouds themselves. 
The parameters of each electrofacies are the multivariate means and the variances 
and covariances that describe the location and dispersion of a multivariate normal 
hyperellipsoid. Consequently, the normal distribution is a useful model, because it 
is specified by a few parameters and has a well-known probability density structure. 
However, it is not uncommon for electrofacies to take a variety of cluster shapes that 
are represented poorly by symmetrical ellipsoids. In an alternative strategy, their dis-
crimination can be based on the actual distribution of their component data points 
rather than their summary parameters. This can be achieved by building a multi-
variate histogram into a computer database. The range of each log variable is parti-
tioned into divisions. In multidimensional space, with logs as orthogonal axes, the 
divisions subdivide the space into a lattice of cells (Figure 5.20). The log responses 
for each zone from a training set are coordinates of a single data point that can be 
allocated to one of these cells. The frequencies of the points for each electrofacies are 
totaled for all cells to create the database histogram.

The database should be designed efficiently to avoid a huge and unnecessary al-
location of computer memory. For example, the relatively coarse partition of each 
of six logs into ten subdivisions results in a framework of a million cells. If the 
training set has a thousand zones, then at least 999,000 cells will be empty. Many 
of these empty cells can also be discounted because they represent unreasonable 

Log 3

Log 2
Log 1

Figure 5.20:  Representation of electrofacies in three-dimensional log space as a multivariate 
histogram of counts in a lattice work of cells. Adapted from Serra and Abbott (1980), Used with 
permission © 1980 Society of Petroleum Engineers.
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combinations of log responses. In practice, efficient histogram databases store only 
information for those cells that are not empty. The database can then be used for 
classification of an unknown zone by inspection of the cell that matches the zone’s 
log coordinates. If the cell is not empty, then the relative frequencies of each of the 
possible electrofacies can be used in the Bayesian formula described earlier to com-
pute their respective posterior probabilities. The a priori probabilities can be taken 
from the training set as the proportion of zones that belong to a given electrofacies, 
or equal prior probabilities can be assigned to all electrofacies. If the unknown zone 
responses coincide with an empty cell, then a decision must be made by examining 
the neighboring cells. Tetzlaff et al. (1989) interpolated (or extrapolated) frequen-
cies from neighboring cells that were weighted by their inverse squared distance. The 
sum of these interpolated values is a projected estimate of the electrofacies densities 
for the empty cell. If all the neighboring cells are empty, then the category of the 
zone remains unknown.

Zones can be misclassified by the two approaches of multiple discriminants and 
multivariate histograms, and this is often the result of different reasons. The para-
metric method generalizes by basing the probability density at any multivariate lo-
cation on the normal statistics of the entire cloud. Misclassifications can occur for 
outlying points or spatial zones where the overlap of group clouds is poorly repre-
sented by multivariate normal ellipsoids. By contrast, the nonparametric method is 
highly specific, with its prediction based on the contents of an individual cell. When 
using training sets of a typical size, the cell frequencies may be small and poor esti-
mates of their theoretical population values. Ideally, a perfect discrimination method 
would incorporate the strengths of both methods by sufficiently generalizing the 
data-point distributions to make predictions robust, but would retain localized fea-
tures that reflect systematic, but smaller-scale effects.

The memory requirements of the multivariate histogram can be reduced consider-
ably by the use of a “shingled block lattice” (SBL) structure of cell allocation, and the 
SBL method has some additional useful features. The structure of the SBL algorithm 
was inspired by the cerebellum model articulation controller (CMAC) model, which 
was introduced by Albus (1975) as a control mechanism for robots, and is modeled 
on the structure and function of the cerebellum. Although it would be considered 
today to be a type of neural network, the CMAC predates neural networks by years 
and is still virtually unknown outside robotics. Its greatly superior speed makes the 
CMAC preferable to conventional neural networks for the real-time demands of 
robot controllers. A geological application to mapping surfaces by using a CMAC was 
described by Hagens and Doveton (1991). According to Burgin (1992), a CMAC is 
most closely comparable to a feed-forward neural network that is trained by back 
propagation, but it almost always outperforms the neural network.

In this electrofacies application, the feedback learning process of the CMAC is 
eliminated, but the design features of a shingled block-lattice structure for coding 
inputs is retained. The SBL structure for coding inputs is a good choice for electrofa-
cies distinctions because it maintains the advantages of the multivariate histogram 
approach, but its structure simultaneously results in huge savings in memory alloca-
tion and causes data-point densities to be generalized over localized neighborhoods. 



[ 154 ]  Principles of Mathematical Petrophysics

These features combine to make the approach a simple and powerful method for 
electrofacies characterization and prediction. The CMAC design is retained, but the 
SBL components are used to sum frequencies rather than to adjust weights to match 
some localized target value.

The SBL structure is shown for two simple models in Figure 5.21, one with two 
inputs, the other with three. The concepts can be generalized to larger numbers of 
inputs in lattices of higher dimensions. The two-input lattice is a two-dimensional 
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Figure 5.21:  Basic structure of an SBL model with two inputs (above) and three inputs (below). 
In each case, log responses from a single depth zone are matched with a grid cell coded as the 
overlap of a unique set of blocks.
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grid whose smallest element is a grid cell. However, rather than reference each cell 
with a specific location address, the cell is identified by the common overlap of four 
unique blocks. Notice that the arrangement of all possible blocks forms an intricate 
shingled tessellation whose overlapping structure causes each input vector of sur-
face information to be generalized over a local neighborhood of blocks. The set of 
blocks is unique to each grid cell, but blocks are shared in common with adjacent grid 
cells. In the simple example, the surface values of 289 grid cells are encoded by the 
weights of one hundred blocks. This memory design differs markedly from conven-
tional storage in both style and size requirements. Each input vector is tagged with 
several address locations rather than a single location. The overlapping of blocks 
allows generalization, rather than the “rote” memory of conventional storage. When 
used to encode data frequencies, the SBL operates in the same manner as an aver-
aged shifted histogram (ASH), as described by Scott (1992).

For a two-dimensional square grid of c elements on each axis, a conventional 
memory of c2 locations is required. This contrasts with rm2 locations in the cerebellum 
model, where r is the width of the block measured in cells, and m is the number of 
blocks per layer on each axis. This allocation results in storage savings that increase 
dramatically for models with higher numbers of inputs. A three-input model can be 
shown conceptually as a three-dimensional construct in which a single grid cell is 
identified by the overlap of a unique set of surrounding blocks. Higher-dimensional 
models will take the form of nested hypercubes. For a prediction system with n 
inputs and c divisions per input, the memory size for a multivariate histogram would 
be cn grid cells. At even a modest number of inputs, huge savings in memory would be 
made by the SBL model because only cn/rn-1 blocks would be needed, where r is the cell 
activation range of the blocks. Added to this, the SBL has better predictive capabili-
ties than the equivalent multivariate histogram.

As a demonstration case study, the SBL method of multivariate histograms was 
applied to the logs and core of the Chase Group sections in training and validation 
wells that were used earlier for the demonstration of multiple discriminant analysis. 
The same log inputs and lithology assignments were used so that useful comparisons 
could be made between the parametric and nonparametric approaches. The most 
fundamental decision concerns the number of layers to be used in the multivariate 
histogram. At one extreme, a single layer would be represented by one hyperdimen-
sional cell, which would include all the log data points. Predictions of the probability 
of lithology assignment for any log input set would be the same and would be equal 
to a vector of the proportions of the lithologies observed in the core. At the other 
extreme, a high number of layers would ultimately partition the multivariate log 
space into such a fine mesh that each observation would be assigned a unique cell. 
In this case, the prediction in the training well would be perfect. However, in the 
validation well, predictions would be erratic and often incorrect. The cause of this 
behavior is that the model has “overfitted” the data (a frequent problem for naïve 
neural-network practitioners, as discussed later). In overfitting, the generalized 
qualities of predictive value in other wells are lost in increasingly detailed localized 
characterizations. As such, the multivariate histogram can reproduce training-set 
assignments as a rote procedure rather than a generalized prediction. Any measure 
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of the real success of the application must be judged from comparison between pre-
dictions and core in a validation well and used as a basis for comparing results gener-
ated from SBL models with differing numbers of layers.

In the Chase Group application, a thirty-layer SBL model was chosen as the best 
predictor following a review of predictions in the Amoco #3HI Montgomery valid-
ation well, using alternative numbers of layers. A tally matrix of lithology predictions 
in the Mobil #1-2 Brown training well is shown in Table 5.5, based on maximum 
probability estimated from frequencies counted from the SBL multivariate histo-
gram The tallies show improvement on the equivalent predictions by multivariate 
discriminant analysis (Table 5.4), which is to be expected because the multivariate 
histogram has greater flexibility in conforming to the shape of the electrofacies data 
cloud, rather than a hyperellipsoid. However, the lithofacies probability profile pro-
duced by the SBL multivariate histogram (Figure 5.22) does not show dramatic dif-
ferences in overall predictive assignments compared with that of the multivariate 
discriminant analysis (Figure 5.19). Consequently, it confirms that multivariate dis-
criminant analysis generally provides a robust and serviceable predictor of category.

The multivariate histogram approach refines the internal variability of compos-
ition within the lithologies, which can be useful in lithofacies interpretation. Core 
measurements of grain density and porosity are also plotted on Figure 5.22 for 
comparison, together with general lithology assignments observed and interpreted 
from the core. The core measurements can also be interpreted with respect to lime-
stone textural changes, using the average values reported from Chase Group cores, 
that are shown in Figure 5.2. So, for example, the shoaling-upward limestone se-
quence in the Fort Riley limestone shows a clear upward trend in increasing porosity, 
which matches expectations of changes from a mud-supported to a grain-supported 
texture. The marine sandstones in the Holmesville Shale and the Fort Riley Lime-
stone are matched by grain densities of quartz. The regressive lowstand shales 
and siltstones of the lower part of the Holmesville Shale are contrasted with the 
coarser-grained clastics of the succeeding transgressive deposits.

Table 5.5.  TALLY MATRIX OF LITHOFACIES PREDICTIONS IN THE CHASE GROUP 

TRAINING WELL MOBIL #1-2 BROWN BASED ON NONPARAMETRIC SBL 30-L AYER 

MULTIVARIATE HISTOGRAM. SH  = SHALE; SLT  = SILTSTONE; DOL  = DOLOMITE; 

LS  = LIMESTONE; (BROKEN)  = MISSING CORE

OBSERVED

PREDICTED

SH SLT DOL LS

SH 71 0 0 0

SLT 4 58 8 8

DOL 0 4 108 3

LS 0 2 14 81

(BROKEN) 2 1
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NEURAL-NETWORK PREDICTION OF LITHOFACIES FROM LOGS

The reservoir management of large oil and gas fields relies increasingly on the de-
velopment of static geomodels as the precursor to dynamic models and simula-
tions. Data for geomodels is drawn from existing wells, most of which have been 
logged but not cored because of the much higher costs that would be incurred in 
data acquisition. As a result, the effective prediction of lithofacies from logs has an 
important economic impact, rather than one of purely academic interest. The giant 

25
50

26
0

0
D

ep
th

 (
fe

et
)

0.20 0.4
SBL probability

Core grain
density (gm/cc) Core porosity %

TO
W

A
N

D
A

 LS
H

O
LM

ESV
ILLE SH

FO
R

T R
ILEY LS

0.6 0.8 1 2.7 2.8

Marine
sandstone

Marine
sandstone

Non-marine
shale and
siltstone

Highstand
limestone

Shoaling-
upward

limestone

Marine
sandstone

Limestone

15 10 5 0

Figure  5.22:  Nonparametric multivariate histogram prediction of lithofacies as probability 
(left) matched with core observations of grain density, porosity, and rocktype (right) in the 
Amoco #3HI Montgomery prediction well.
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and mature Hugoton gas field provides an excellent example of where a geomodel 
was developed to provide a comprehensive lithologic and petrophysical realization 
of a complex gas system (Dubois et  al., 2006). This goal required the creation of 
a fine-scale cellular petrophysical construct to model the thin layers of the Chase 
Group and the differentially depleted reservoir units within the field. Core-based 
calibration of neural-network predictions of lithofacies using log data were coupled 
with geologically constraining variables in order to provide accurate lithofacies mod-
els whose resolution ranged from well to field scales. Because of the high degree of 
variability within the key properties of porosity, permeability, and fluid saturation, 
eleven lithofacies were selected for prediction. The model represented more than 
10,000 square miles and consisted of 169 layers, with cell dimensions of 660 x 660 
feet, resulting in 110 million cells. A project of this magnitude required the flexibility 
of a neural-network application to accommodate the prediction of different lithofa-
cies, coupled with extensive cross validation to ensure the closest match with known 
geometries and constraints.

Much of the theory that underlies neural networks was originally inspired by 
research by neuroscientists on the structure and function of the brain. The brain 
consists of a massively interconnected system of neurons that performs sensory 
processing, controls motor functions, and recognizes patterns. The synapses are the 
communication medium between neurons and are strengthened or weakened by 
electrochemical processes. It is theorized that we learn, store memories, and modify 
our behavior because of changes in the strengths of synapses within our brains. This 
phenomenon provides the core concept for artificial neural networks, which have 
been applied in a wide variety of disciplines, with probably the earliest application 
to petrophysics by Baldwin et  al. (1989). Other early examples of petrophysical 
neural-network studies include Derek et al. (1990) and Rogers et al. (1992).

The structure of a neural network is conventionally drawn as a hierarchy of layers 
in which nodes (representing neurons) are connected by arcs (Figure 5.23). The arith-
metic value of any node is equal to the sum of the values of the preceding nodes, each 
multiplied by the weight of the connecting arc:

y w xi ij j= ∑
where yi is the value of the ith node, xj is the value of the jth node in the preceding 
layer, and wij is the weight associated with the arc that connects the two nodes. The 
output of a node is governed by an activation function of the summed input and a 
threshold that determines the initiation of output. The firing state of a node is either 
unity or zero, and it is determined by a sigmoidal function that models the transfer 
from input to output signals (see Figure 5.23). The general equation of the sigmoidal 
function takes the form:

P e a t= +( )−1 1/ /

where P is the probability of the node firing, t is a constant that determines the 
steepness of the function, and a is the activation of the node. This feature attempts 
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to imitate the behavior of real neurons, which often tend to be either active or in-
active. The steepness of the activation function will determine whether most of the 
input is transferred onward through the nodes or whether output is only initiated 
by stronger inputs.

A basic model consists of three layers of nodes. The first is an input layer that 
receives input data. The middle or hidden layer draws stimulation from the input 
nodes and transmits onwards to the final output layer, which is the result of the 
system. More complex neural networks incorporate multiple hidden layers. How-
ever, more hidden layers increase the likelihood that the network will simply mem-
orize the input associations, rather than learn to generalize for useful predictions 
beyond the training set. By the same token, the number of nodes within a single 
hidden layer should be restricted in order to encourage generalization rather than 
memorization. In training the network, a set of patterns is presented repeatedly 
and the weights of the arcs are modified so that the output makes a better match 
with a desired result. Training is usually accomplished by the back-propagation of 
errors through the network, which distributes the difference between the desired 
result and the actual output as small incremental adjustments in the interconnec-
tion weights. The process is gradual and iterative; weights gradually converge to an 
equilibrium setting, at which point the network is trained.

For the prediction of lithofacies from logs in the Hugoton field, a standard 
single-hidden- layer neural network was applied to two computed geological vari-
ables of a depositional environment indicator (MnM) and a stratigraphic cycle rela-
tive position (RelPos), as supplements to the following log values: gamma-ray (GR), 
logarithmically-scaled deep-induction resistivity (logILD), averaged neutron and 
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Figure 5.23:  Schematic representation of single hidden-layer neural network used to estimate 
probabilities of Chase Group lithofacies from inputs of log parameters and geologic constrain-
ing variables.
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density porosity (Φn/2 + Φd/2), neutron and density porosity difference (Φn−Φd), 
and photoelectric factor (PeF). A diagrammatic representation of the neural-network 
operation and its inputs are shown in Figure 5.23. The eleven lithofacies used for 
prediction consisted of continental sandstone, continental coarse siltstone, conti-
nental fine siltstone, marine sandstone, marine siltstone, mudstone, wackestone, 
packstone-grainstone, bafflestone, very fine crystalline dolomite, and fine to medium 
crystalline dolomite. An example of lithofacies prediction in the Chase Group of a 
Hugoton well is shown in Figure 5.24 and compared with actual lithofacies assign-
ments from the core.

Verification of performance by a validation set or sets is particularly important 
when using neural networks. Validation provides a more realistic test of effective 
prediction power than the statistics of learning generated by the training set. There 
are times when a network can be made so complex that it reproduces outputs from 
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further use.
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the training sets almost perfectly. However, this same network may perform worse 
than conventional statistical methods when it generates predictions from new 
observations. The purpose of the training is to acquire the ability to generalize from 
observations rather than to reproduce them by rote. Generalization will absorb the 
systematic trends that link observations and screen out the localized and random 
error components. If these components are absorbed from the training input, the 
weight configuration is distorted and may show erratic behavior in predictions out-
side the training set. Neural-network specialists are well aware of this problem, 
which is generally termed “overfitting,” and they have suggested various strategies 
to minimize the effects (see, e.g., Smith, 1993).

In the development of the Hugoton geomodel, the training of the neural net-
work was monitored by intensive and repetitive cross validation among the training 
set of cored and logged wells. The goal of obtaining a perfect predictive model is 
clearly unrealistic and even unnecessary, because the overriding purpose of the geo-
model is to capture the petrophysical variability in porosity, permeability, and fluid 
saturations. Consequently, the cost of predicting the wrong lithofacies is lower if the 
predicted lithofacies has petrophysical properties that are similar to the actual litho-
facies, than if their petrophysical properties differ substantially. This concept was 
incorporated within the cross validation procedure as a misallocation cost matrix. 
A fence-diagram representation of the final geomodel is shown in Figure 5.25, where 
continental siltstones (red and orange) separate the marine carbonate half cycles. 
Both continental (yellow-orange) and marine (yellow) sandstones predominate in 
the landward direction to the northwest, while marine carbonates (cooler colors) 
dominate in the basinward direction to the southeast.

N

Colorado

KansasOklahoma

Texas

Figure  5.25:  Stratigraphic cross-section fence diagrams of predicted lithofacies within the 
Hugoton Chase Group geomodel. From Dubois et  al. (2006), © 2006 American Association 
of Petroleum Geologists (AAPG), reprinted by permission of the AAPG, whose permission is 
required for further use.
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As a final note, most neural networks operate as supervised procedures, that is, 
they are trained on known material before being applied to problem data. Unsuper-
vised learning is obviously a much more difficult process to emulate in a realistic and 
convincing manner. However, some useful progress has been made on self-organized 
networks, following the pioneering work of Kohonen (1984).

BEYOND PRODUCT FACIES TO THE PETROPHYSICAL PREDICTION 
OF PROCESS FACIES

In the applications described in this chapter, both supervised and unsupervised 
methods have been used to predict lithological categories on the basis of petrophys-
ical logs. When the categories are lithologies, then the assignment is one of petro-
physical rock typing. When the categories of lithology are subdivided into separable 
lithofacies, then the classification is keyed to textural and compositional character-
istics. Because both lithofacies and their petrophysical measurements vary continu-
ously, the probabilistic predictions of lithological categories are intrinsic indications 
of the variability of the lithofacies. The properties associated with each lithofacies 
are chosen selectively by the geologist as those that are most likely to be linked with 
the genetic process of either deposition or subsequent diagenetic overprint. If petro-
physical measurements can be mapped successfully to separate lithofacies, then the 
geologist can then interpret process for a logged section where no core is available. 
The identification of lithofacies in outcrop, core, or by petrophysical prediction is 
what we mean by the classification of product facies, which are subsequently inter-
preted in terms of process facies. So, for example, a coarse-grained sandstone litho-
facies generally reflects a high-energy depositional environment, but this could be 
assigned either to a channel deposit or to a beach sandstone. In the absence of de-
finitive additional criteria, the determination is generally made by context, that is, 
the nature of the vertically adjacent lithofacies.

Walther (1894) was one of the first to realize that facies that succeed one an-
other conformably must have been deposited in adjacent environments. This con-
cept, known as Walther’s law, was summarized by Selley (1976):  “a conformable 
vertical sequence of facies was generated by a lateral sequence of environments.” 
Because empirical electrofacies are the petrophysical expression of lithofacies, they 
are subject to the same constraints. It follows that, in a conformable sequence, cer-
tain electrofacies will never be expected to succeed others. Up to this point, we have 
considered the classification of any unknown zone in isolation. However, Walther’s 
law implies that the nature of the electrofacies of the immediately preceding zone is 
an important piece of information. This can be incorporated easily as the prior prob-
ability term of a Bayesian equation, based on the assigned electrofacies probability 
for the preceding zone.

Posterior probabilities based on sequence position are easily generated by a 
Markov-chain analysis. Based on data from control wells, a tally matrix of observed 
vertical transitions between electrofacies types can be converted to a matrix of tran-
sition probabilities. Each transition probability is then a prior probability as to the 
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electrofacies identity of a zone, given the identity of the immediately preceding 
zone. The transition matrix automatically quantifies Walther’s law for insertion into 
the Bayesian classifier. It should be noted that Walther’s law holds exactly only for 
conformable sequences. However, the exceptions that are caused by unconformities 
and other discontinuities are automatically accommodated within the transition sta-
tistics of the observational sequences. Transition probabilities of an electrofacies to 
itself capture the relative thickness of the electrofacies. Bed thicknesses predicted by 
this transition probability will follow a geometric distribution (Krumbein and Dacey, 
1969). Although sedimentary bed thicknesses are commonly considered to be ap-
proximately lognormally distributed (see, e.g., Pettijohn, 1957; Potter and Siever, 
1955), they are reasonably represented by the geometric distribution for the pur-
poses of electrofacies prediction. Finally, the common tendency for loosely repetitive 
motifs of lithofacies (or cycles) is expressed by the structure of the transition prob-
ability. In the event of a randomly ordered succession of electrofacies, the transition 
probabilities are equal to the relative proportion of the occurrence of each of the 
electrofacies. These estimates would be appropriate prior probabilities for a Bayesian 
model that disregards vertical contiguities and is weighted by overall electrofacies 
abundances.

For a case-study application of this concept, which was described by Bohling 
et al. (1997), we revisit the hydrology observation well described in Chapter 4 for 
clay-mineral compositional estimation from logs calibrated to X-ray diffraction anal-
yses. The logged section of the Lower Cretaceous clastic succession was cored and the 
depositional environments were interpreted using standard visual observations of 
the core (Figure 5.26). The core represents the record of a complex of deltaic depos-
its, with fluvial sandstones and alluvial-plain clays, and estuarine and paralic units. 
The core has been studied by several geologists independently, so that there are three 
different environmental interpretations. Although they are in essential agreement, 
there are local differences of opinion, which commonly occur between geologists. 
Consequently, sedimentary process interpretation of units in a core should be con-
sidered as a “ground interpretation,” rather than the ground truth that would be 
expected from core descriptions of lithology and texture, which should be repeat-
able between competent geologists. Rather than presenting a drawback to a petro-
physical application, this provides a new role for the integrative method to capture 
the log properties of the environment; to capture the consistencies, ambiguities, 
and contradictions of the audit; and to alert the geologist to zones of anomalous 
petrophysical character that were passed over in the initial visual assessment. The 
feedback loop between core examination and supervised log calibration coordinates 
visual observations with invisible petrophysical properties.

Six sedimentary facies were identified from core descriptions of the well: marine 
shale, paralic deposit, floodplain deposit, channel sandstone, splay sandstone, and 
paleosol. The “floodplain” and “paralic” terms were applied as broad “generic” facies, 
that is, mixtures of facies from a generalized environmental setting, as contrasted 
with the other “specific” facies, which have diagnostic features of distinct environ-
ments. This classification strategy cut down on the more speculative identification of 
sedimentary environments in cored sections whose features (or lack of them) led to 
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arbitrary or ambiguous calls. At the same time, the strategy provided an additional 
opportunity for a petrophysical classification method to either subdivide generic fa-
cies or to be as conservative as the geologist. So, for example, would the petrophys-
ical classification identify all floodplain units as “floodplain,” or would it be bolder, 
such as by identifying some of the sandstones as either channel or splay deposits? 
These considerations underscore the role of this approach as an integrative learn-
ing tool.

A SBL multivariate histogram was used to produce probability density estimates 
for each facies for all logged depths, including those with missing cores. These 
density estimates are combined using Bayes’ theorem to produce probabilities of 
membership in each facies. These initial results are shown in Figure 5.27, where 
the probability profile is matched against the facies assignments from the core. In 
a second pass, transition probabilities generated from the succession of cored facies 
were substituted as prior probabilities for the classification procedure. By doing this, 
the locus measures that were based purely on their position in multivariate log space 
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Figure 5.26:  Interpreted depositional facies from core observation (left) matched with SBL 
multivariate histogram prediction based on log locus measures (center) then modified by the 
incorporation of transition probability context measures (right) of a Lower Cretaceous deltaic 
sequence. Courtesy Society for Sedimentary Research.
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were augmented by context measures that reflected the nature of the underlying fa-
cies. At the most basic level, transitions that are never observed to occur are excluded 
by a prior probability of zero. In this sense, the transition probability matrix applies 
Walther’s law.

The results from the addition of transition probabilities into the priors are shown 
in Figure 5.27 for further comparison and interpretation. The immediate difference 
that can be seen is that the predictions are much crisper than those restricted to 
locus measures, where all facies are considered to be possible. The log responses of 
paralic and channel sandstones are so similar that the SBL multivariate histogram 
has difficulties in distinguishing them until the context measure of transition prob-
ability is used as a modifier. A  paleosol is now predicted in the lower part of the 
upper floodplain unit that was not observed originally, although comparison with 
the log-predicted clay mineral profile (Figure  4.9) suggests that this core section 
should be revisited for further evaluation. These and other observations illustrate 
the enhanced collaborative aspects of processed logs that are a significant advance 
on traditional core-log evaluations based on raw curves.

The interpretation of deposits from the ephemeral facies mosaic of a delta plain 
will always contain some ambiguity, regardless of whether judgments are based on 
core, logs, or both. A similar situation can be encountered in the interpretation of 
satellite imagery, where context is an important component of identification. Haslett 
(1985) showed how substantial improvements could be made in maximum-likelihood 
classifications of pixel elements in LANDSAT imagery by incorporating Markovian 
transition probabilities for the states of adjacent pixels. By this means, the vector of 
responses at each pixel location is not processed in isolation but is considered in the 
context of broader geographic elements and lateral relationships.

In a related core-log study, Bohling et al. (1996) related lithodensity-neutron and 
spectral gamma-ray measurements to the sequence stratigraphic framework inter-
preted from a 330-meter Pennsylvanian core from southwestern Kansas. Middle 
and Upper Pennsylvanian depositional sequences in the upper Marmaton, Lan-
sing, and Kansas City groups have been defined in cores and outcrops across the 
Kansas shelf. The depositional sequences are generally thinner than sixty feet and 
are carbonate-dominated successions representing marine inundation and retreat. 
These depositional sequences fall below the resolution of conventional seismic meth-
ods, but are well within the domain of information provided by wireline logs. Log 
values of the sequence stratigraphic depositional facies, including paleosols, flooding 
units, condensed sections and late high-stand deep-water, peritidal and subtidal car-
bonate units were enumerated within a SBL multivariate histogram for analysis and 
prediction.

Transition probabilities based on sequence position were generated through 
Markov-chain analysis of the sequence facies observed in the long core (Table 5.6). 
The transition matrix was evaluated in terms of the sequence stratigraphic model, 
with expectations that the values reflected processes of regional scale, rather than 
the localized character of lateral facies of a delta complex. The depositional sequences 
developed on the Kansas shelf in the neighborhood of the training well are typified 
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by thin flooding units and condensed sections interbedded with thick, regressive 
carbonates. The paleosols are generally well developed, but the subaerial exposure 
that terminates the sequence may be expressed only as an exposure surface and/or 
meteoric diagenetic overprinting of the underlying carbonate. The carbonate units 
are similar lithologically, but the highstand, subtidal, and peritidal facies are usually 
visually distinctive in core samples. However, it was anticipated that they may show 
only minor chemical and mineralogical differences and so be challenging for petro-
physical differentiation.

Results of predictions by the SBL multivariate histogram are shown in Figure 
5.27 and compared with core assignments. The paleosols in the sequence are 
mostly calcareous oxidized siltstones with some calcretes. Almost all of the paleo-
sols observed in the core were correctly predicted using probabilities generated by 
the SBL multivariate histogram; this was an important facies to recognize, since 
these are principal horizons used to subdivide the depositional sequences. The in-
corporation of transition probabilities as prior probabilities eliminated most of the 
remaining misclassifications. Thicker flooding units and condensed sections were 
correctly predicted, but other, thinner units were often missed, partly because 
they were below the resolution of the well logs. The differentiation of highstand, 
subtidal, and peritidal carbonate facies proved to be more challenging, but the in-
corporation of transition probabilities improved the success of teh classifications. 
When examined in detail, many of the misclassifications were seen to be caused 
by diagenetic processes such as dolomitization and chert formation. With further 
training and evaluation, SBL multivariate histograms offer a fruitful integrative 
core-log strategy for the interpretation of stratigraphic sequences over large dis-
tances across the Pennsylvanian Kansas shelf, where cores are much less common 
than petrophysical logs.

Table 5.6.  TRANSITION PROBABILITY MATRIX OF PENNSYLVANIAN  

STRATIGRAPHIC UNITS OBSERVED IN CORE FROM A WELL IN SOUTHWEST 

KANSAS. FROM BOHLING ET AL. (1996), COURTESY SOCIETY FOR  

SEDIMENTARY RESEARCH

FU LFU CD HS ST PT PLS

Flooding Unit (FU) FU 0.08 0.92

Lowstand FU (LFU) LFU 1.00

Condensed (CD) CD 0.40 0.47 0.13

Highstand (HS) HS 0.71 0.29

Subtidal (ST) ST 0.07 0.07 0.79 0.07

Peritidal (PT) PT 0.24 0.29 0.47

Paleosol (PLS) PLS 0.89 0.11
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CHAPTER 6

Pore-System Facies: Pore Throats  
and Pore Bodies

THE PETROFACIES CONCEPT

When Archie (1950) first introduced the term “petrophysics,” he outlined a tenta-
tive petrophysical system “. . . which revolves mainly around pore-size distribution 
which defines the capillary pressure curve, permeability, and porosity.” As such, a 
pore distribution does not necessarily coincide with a specific rock type. Different 
lithologies might contain similar pore distributions and a single lithology might be 
characterized by several distinctive pore distributions. In the latter case, these differ-
ences could be used as the basis for a lithofacies subdivision, where the criteria were 
defined by pore-network properties rather than more conventional fabric observa-
tions. Often, there will be a substantial commonality between the two approaches, 
because the pore network and rock framework are complementary.

The term “petrofacies” (which comes from “petrophysical facies”) extends the 
facies concept to pore networks. Although this name is commonly (but not exclu-
sively) used for this purpose, the range of published definitions is fairly broad, as 
pointed out by Sullivan et al. (2003). Some authors intermingle notions of petro-
facies with electrofacies and lithofacies, which is understandable, because in many 
reservoirs there are strong intercorrelations between them. In this text, we distin-
guish between electrofacies, either seemingly natural petrophysical log associations 
found by unsupervised methods, or those determined from lithofacies by supervised 
methods. Lithofacies are generally recognized by standard visual observations of a 
core, although they may be defined by reference to distinctive porosity-permeability 
associations (petrofacies) in core measurements.

The two fundamental reservoir components of pore microarchitecture are essen-
tially the same as the spatial elements of conventional architecture: the relative sizes 
and arrangement of the pore bodies (rooms) and the pore throats (doors between 
rooms). In an oil or gas reservoir, the volume of pore space contained in the pore 
bodies dictates the total storage capacity, while the access of hydrocarbon to the pore 
bodies is regulated by the size of the linking pore throats. Realistic pore-network 
models for characterizing hydrocarbon recovery from reservoirs are, appropriately, 
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labyrinthine in their intricacy. However, the key pore attributes that are the focus 
of petrophysical applications are the size distributions of the pore bodies and pore 
throats, together with the aspect ratio of pore-body size to pore-throat size. The 
interplay between these parameters and the petrophysical measurements of por-
osity and permeability are the basis for petrofacies distinctions in a hierarchy of 
models that attempt to accommodate differing degrees of pore complexity.

EQUIVALENT HYDRAULIC RADIUS OF TUBES

The relationship between permeability and porosity can be defined precisely if a rock 
is modeled by a pore system of uniform tubes. Combining Darcy’s law for flow in 
porous media and Poiseuille’s law for flow in tubes and solving for permeability (Bird 
et al., 1960) yields:

k
r=







∗
2

8
Φ

where k is permeability (μm2), r is the tube radius (μm), and Φ is the porosity (V Vpore rock| ).  
This model of pore networks as bundles of capillary tubes is tractable mathematically 
but is a crude representation of reality. However, this simple approximation does 
show the fundamental relationship between permeability, porosity, and hydraulic 
radius that can be modified for porous media. When the equation is rearranged and 
generalized to solve for equivalent hydraulic radius, then:

r a
k= ∗
Φ

where a is a unit conversion factor. The square-root ratio of permeability to porosity 
has been used for many years as a basic measure of reservoir quality; its intrinsic 
meaning is shown by the equation to be the equivalent hydraulic radius of the pore 
element that is the channel for fluid transmission. For reservoir rocks, this element 
is the distribution of pore-throat sizes, as evaluated by porosimetry determined 
from capillary pressure measurements.

CAPILLARY PRESSURE EVALUATION OF PORE-THROAT SIZES

Although capillary pressure data have been obtained from core samples by the oil 
industry for about fifty years, their primary users have been petroleum engineers. 
Fortunately, several excellent review papers have been written for geologists that 
relate capillary pressure to rock type and reservoir structure, as well as applications 
to both reservoir analysis and exploration (Arps, 1964; Stout, 1964; Berg, 1975;  
Jennings, 1987; Vavra et al., 1992). The saturation profiles of reservoir rocks can be 
replicated by laboratory measurements of capillary pressure. Most commonly, mer-
cury is injected into a core plug sample at increasing pressures, and the mercury 
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saturation of the core is recorded at different pressure levels. The laboratory process 
simulates the intrusion of hydrocarbons into a water-wet rock under the increasing 
buoyancy pressure that would be experienced by the rock at successively higher lev-
els in a hydrocarbon column. Resistance to the introduction of mercury into the core 
is provided by the capillary forces within the pore system. In a hydrocarbon system, 
the wetting fluid (conventionally thought to be water) adheres to the internal sur-
faces and resists the introduction of the hydrocarbon nonwetting phase. The rela-
tionship between capillary forces and pore-throat size is described by the Washburn 
equation (Washburn, 1921):

P
rc = 2σ θcos

where Pc is the capillary pressure, σ is the surface tension of the wetting fluid, θ 
is the contact angle between the wetting fluid and the solid surface, and r is the 
pore-throat radius.

Because the term 2σ θcos  is a constant for any given nonwetting/wetting fluid 
(or gas) couplet, the capillary pressure is controlled by the pore-throat radius of the 
rock pores. If the pore throats had a unique radius, then the pore network would 
be impenetrable up to a critical pressure, at which the entire pore system would be 
breached. In reality, rock pore systems have a range of pore-throat sizes, so the capil-
lary pressure curve records the saturation of the pore throats at successively smaller 
sizes with increasing pressure.

Capillary pressure-saturation data for five core samples of medium- to very 
fine-grained Atokan sandstone facies in the Norcan East field of Kansas are shown 
as capillary curves in Figure 6.1. These curves represent the cumulative relative fre-
quencies of pore-throat sizes in each core that are penetrated at increasing capillary 
pressure. Using the Washburn equation, the capillary pressure scale can be converted 
into an equivalent pore-throat radius scale. Then, by taking the first difference of the 
curve of saturations, the frequency distribution of pore-throat radii can be displayed 
and scaled in microns (Figure 6.2). A commonly used subdivision of pore-throat sizes 
in clastic rocks (e.g., Hartmann and Coalson, 1990) is:

These terms serve as useful general descriptors of pore-throat classes. When 
a sample is characterized by a principal pore-throat size, it can be assigned to a 
pore-throat type and equated to a pore-throat petrofacies. Using this approach, four 

 

Pore-throat radius, μm Pore-throat type Entry pressure, psi (kPa)

<0.1 Nano 1076 (7419)

0.1–0.5 Micro 215 (1482)

0.5–2 Meso 54 (372)

2–10 Macro 11 (76)

>10 Mega 0 (0)
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of the Atokan sandstone core samples can be classified as macropore-throat petrofa-
cies, and the fifth as a mesopore-throat petrofacies. As might be expected, the or-
dering of dominant pore-throat classes by size is matched by the grain size classes 
observed in the core.

Because a first-difference plot, such as that shown in Figure 6.2, graphs the 
slope between successive pore-throat sizes accessed by the nonwetting fluid, the 
radius of the principal pore throat can be estimated as the geometric average of 
the two throat sizes that link the maximum difference. A logarithmic crossplot of 
principal pore-throat radius versus permeability of the core samples (Figure 6.3) 
shows the strong linear trend that has been observed in Atokan and Morrowan 
sandstones deposited in marine, estuarine, and fluvial environments (Byrnes 
et al., 2001).

This pore-throat size and permeability relationship has been reported in many 
other core capillary studies (e.g., Swanson, 1981; Thompson et  al., 1987; Basan 
et al., 1997). Although the principal pore throat is equated here with the mode of 
the pore-throat distribution, its high correlation with permeability elevates it to the 
status of a “characteristic pore throat,” because it emulates the hydraulic radius of a 
simple tube model. In sandstones having a broader range of pore-throat sizes, the 
location of a characteristic pore throat loses its meaning, and predictions of perme-
ability must be based on additional pore-throat measures. However, although the 
criteria used for their recognition varies somewhat, principal pore throats are com-
mon in intergranular pore systems, and their radius is related to the logarithm of 
permeability.
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Figure  6.3:  Logarithmic crossplot of modal pore-throat radii calculated from capillary 
pressure measurements for Atoka sandstone cores from the east Norcan field versus core 
permeabilities.
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THE WINLAND EQUATION

The expense involved in core measurements of capillary pressure prompted industry 
researchers to investigate methods to estimate the characteristic pore-throat size 
based on porosity and permeability measurements alone. The earliest documented 
study along these lines was that of Dale Winland, who used capillary measurements 
of cores from the Spindle field in Colorado. Winland made a regression analysis 
of pore-throat radii in fifty-six sandstones and twenty-six carbonates, predicted 
from porosity and permeability measurements over a range of saturation levels; he 
obtained the highest correlation at a mercury saturation of 35  percent. Kolodzie 
(1980) published Winland’s results, including the Winland equation:

log . . log . logr kair35 0 732 0 588 0 864= + ⋅ − ⋅ Φ

where r35 is the pore-throat radius in microns (μ) at 35 percent mercury saturation, k 
is the absolute permeability to air (md), and Φ is the porosity (%).

Because core measurements are far more common than capillary pressure curves 
in reservoir databases, the r35 estimate of the principal pore-throat radius by the 
Winland equation has wide applicability. Examples of reservoir studies that have 
used Winland’s equation to discriminate pore type and assess reservoir quality in-
clude Hartmann and Coalson (1990) and Martin et al. (1997). Practitioners of the 
r35 method point out that results are valid for rocks whose pore space is dominantly 
intergranular or intercrystalline.

An instructive demonstration of the estimation of principal pore-throat size 
and its application to the delineation of flow units is provided by the Atokan 
sandstone reservoir in the Norcan east field. A  comparison between principal 
pore-throat radii and the Winland r35 estimates calculated from permeability and 
porosity measurements of Atokan sandstone core samples is shown in Figure 6.4. 
In this field, there is a good concordance between the Winland equation r35 pre-
dictions and the principal pore-throat sizes based on capillary pressure measure-
ments. In other clastic reservoirs where the Winland equation fails to match core 
observations, custom-made equations can be developed by regression analyses of 
capillary curve data related to core permeabilities and porosities using the method 
described in detail by Pittman (1992).

If the Winland equation is considered to be a useful model for a reservoir, then 
r35 pore-throat sizes can be estimated across the field. A profile of r35 pore-throat size 
estimates is shown in Figure 6.5 for the S2 Atokan sandstone unit in the Murfin #1-3 
Patton, which is the type well for the Norcan east field. The Winland equation was 
applied both to core measurements of porosity and permeability and to log porosity 
and estimated permeability based on gamma-ray and porosity logs. The estimated 
permeabilities were provided by the regression relationship developed and described 
in Chapter 3.

The match between the two r35 estimates is good, as judged by their common dis-
tinction of three flow units and their assignment to meso- (upper flow unit), micro- 
(middle flow unit), and macro- (lower flow unit) pore-throat petrofacies. If the log 
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estimates are considered to be validated by the core measurements, then Winland 
equation r35 estimates can be made with some confidence in uncored wells across 
the field. The log-based results are calculated at the digital log-sampling interval, so 
estimates can be interpolated between irregularly spaced core measurements. In this 
sense, the calibrated relationships between core and logs can be leveraged to popu-
late a reservoir model in a more comprehensive manner.

The three distinctive flow units in the Murfin #1-3 Patton are laterally extensive 
across the field and were related to lithofacies observed in the core by Bhattacharya 
et al. (2008). The lower flow unit is a fine-grained, cross-bedded marine sandstone 
overlain by a thin middle flow unit of heterolithic, flaser-bedded, very fine-grained 
sandstone and shale, interpreted to have been deposited in a distal tidal environ-
ment. The upper flow unit of very fine-grained, bidirectional-rippled sandstone is 
interpreted as tidal rhythmites.

THE FLOW-UNIT CONCEPT

The differentiation of flow units and their correlation between wells has been rec-
ognized as a fundamental step in reservoir characterization and modeling since the 
introduction of the flow-unit concept by Hearn et al. (1984). A “flow unit” is defined 
as a reservoir zone with lateral continuity between wells and internally consistent 
properties that control fluid flow and are distinct from those of adjacent flow units. 
Flow units should not be confused with reservoir compartments, which are not hy-
draulically connected with one another. Differences in pressure or free-water level 
(FWL), as discussed in Chapter 7, demonstrate the existence of separate compart-
ments, each of which may contain a number of distinctive flow units.

Flow units commonly are not exactly matched by equivalent lithofacies, although 
there may be a strong congruence between the two classifications because of the 
interplay between flow properties and rock-texture descriptors. Criteria that a geolo-
gist might use for facies discrimination may subdivide rocks based on interpreta-
tions of their depositional environments and/or diagenetic histories. The boundaries 
of genetic units described by a geologist may be useful for the reservoir engineer if 
they coincide with distinctive changes in flow properties. However, there may be 
instances where distinctive flow units are either observed within a single geological 
facies or flow properties are essentially the same across a facies boundary. Conse-
quently, if the purpose of a reservoir-layer subdivision is the identification of flow 
units, attention should be focused on the hydraulic properties of porosity (“storage”) 
and permeability (“speed”).

An example of the distinction between lithofacies subdivisions and flow units in 
the Hartzog Draw field of the Powder River Basin, Wyoming was described by Hearn 
et al. (1984). The reservoir unit is in the Shannon sandstone that was deposited as 
a complex of sand ridges in the Late Cretaceous seaway. The internal structure of 
the sand ridge of the Hartzog Draw field was subdivided stratigraphically into three 
lenses of bar, bar margin, and interbar facies. Distinctions between these facies in 
cored wells were made on the basis of grain size, bedding structure, and bioturbation 

  



Por e-SyS t e m Fac ie S :  Por e t hroat S  a nd Por e Bodie S  [ 179 ]

features. A lithostratigraphic cross-section of the field is shown in Figure 6.6. Hearn 
et  al. (1984) noted that there was considerable variability in reservoir properties 
within each lithofacies. However, they were able to subdivide the reservoir into five 
distinctive flow units on the basis of porosity and permeability and to map these 
across the field (Figure 6.6).

The two methods of subdivision complement one another, so that standard pro-
cedures of reservoir characterization begin with the identification of lithofacies, 
sequences, and depositional environments from the core and logs. These are cor-
related across the field in the development of a geomodel interpretation. As part 
of the process to allow interpolation to uncored wells, attention is also paid to the 
interplay between lithofacies and flow units that is suggested by porosity and perme-
ability measurements and their common link with petrophysical log properties. The 
subdivision of flow units is keyed to porosity and permeability associations, as illus-
trated in Figure 6.7, utilizing capillary pressure data, where available. Because fluid 
flow is determined by permeability, the most diagnostic rock property is pore-throat 
size. Consequently, a flow unit is a zone that has a relatively uniform, dominant 
pore-throat size, and hence a consistent flow behavior.

PETROFACIES CASE-STUDY APPLICATIONS  
OF THE WINLAND EQUATION

Capillary pressure curves measured on core samples provide the most comprehen-
sive information on flow units because the curves express the entire pore-throat 
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Figure 6.6:  Stratigraphic subdivision (above) and flow-unit subdivision (below) of the Shannon 
sandstone in the Hartzog draw field, Powder River Basin, Wyoming. Adapted from Hearn et al. 
(1984), Used with permission © 1984 Society of Petroleum Engineers.
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distribution. However, in rocks with intergranular porosity, flow units can be 
approximated using Winland r35 estimates of the dominant pore-throat radii from 
core measurements of porosity and permeability. Porras (1998) applied the Winland 
equation estimate of r35 to Cretaceous and Tertiary clastic rocks of the Carito Norte 
field in Venezuela. Core measurements of porosity and permeability are shown as a 
crossplot in Figure 6.8, referenced with contours of the Winland r35 pore-throat size 
and pore-throat classes.

By using this crossplot in conjunction with capillary pressure measurements, Por-
ras (1998) was able to identify five distinctive petrofacies bounded by the Winland r35 
values (Figure 6.8). Type curves of capillary pressure for these petrofacies are shown 
in Figure 6.9. Earlier studies of the cores from this field defined nine lithofacies of 
shaly sandstones and coal, with four sandstone facies distinguished primarily on the 
basis of grain size. A comparison (Figure 6.10) of the lithofacies classification with 
the Winland r35 pore-throat sizes in a well shows a good overall match between sand-
stone lithofacies, which is to be expected because the subdivision is keyed so strongly 
to granulometry. However, Porras (1998) cautioned that there were many instances 
where different petrofacies occurred within a single lithofacies. In addition, r35 esti-
mates are continuous data, in contrast with discrete lithofacies categories, so their 
information content is higher and linked more directly with reservoir properties. 
This can be seen in the well profile in Figure 6.10, where the general trend of upward 
declining porosity is matched by decreases in the r35 sizes, but indicated only vaguely 
by the lithofacies classification.
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A number of published laboratory studies have critically compared the predictions 
of the Winland equation with capillary pressure data from a variety of reservoir rock 
types. In particular, the Winland-equation prediction that the principal pore throat 
will be breached at a saturation of 35 percent has been examined carefully, leading to 
alternative conclusions. So, for example, Pittman (1992) extended Winland’s work 
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Figure  6.10:  Lithofacies, porosity, estimated Winland r35 pore-throat radii, and petrofa-
cies in a well in the Carito Norte field in Venezuela. From Porras (1998), courtesy Society of 
Petrophysicists and Well Log Analysts.
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using a larger data set of 202 sandstone samples from fourteen formations rang-
ing from Ordovician to Tertiary in age. Rather than producing a single equation, he 
published a set of equations that relate the radius of the pore throat to porosity and 
permeability over a range of different saturations of the nonwetting fluid (see review 
in Chapter 7). From his analysis he concluded that the best correlation of pore-throat 
size with permeability occurred at a mercury saturation of 25 percent.

In a detailed core study of the highly porous and permeable Nubia sandstone of 
Egypt, Nabawy et al. (2010) decided that the best correlation occurred at a satur-
ation of 10 percent, while Sujuan et al. (2011) demonstrated that a 20 percent satur-
ation provided the best estimator in tight Triassic gas sandstones in China. Spearing 
et al. (2001) examined capillary curves for the tight-gas Sherwood sandstone in Eng-
land and observed that, while principal pore throats could be discriminated, they 
were not associated with any specific mercury saturation. They concluded that the 
Winland equation had poor predictive power. On a more positive note, Leal et al. 
(2001) found an excellent correlation between the estimates of pore-throat radius by 
the Winland equation with the pore-throat radius at 35 percent mercury saturation. 
In spite of the bimodal character of the pore-throat distribution, they obtained good 
predictions of permeabilty, from which they concluded that the r35 calculation had 
captured the pore-throat size that most contributed to permeability.

The extension of the principal pore-throat estimation to carbonate rocks must 
take into account the wide range of potential pore shapes and sizes and their degree 
of connectivity. In nonvugular limestones or dolomites, interparticle pore spaces (ei-
ther intergranular or intercrystalline) appear to behave in a manner broadly similar 
to the intergranular network of clastic rocks. In these instances, the Winland equa-
tion for estimation of r35 may be applied cautiously in reservoir modeling; however, 
the predictions should be examined carefully. For example, Martin et  al. (1997) 
described the use of Winland-equation estimates of r35 to characterize petrophys-
ical flow units in a variety of case studies of carbonate reservoirs. An example of 
r35 pore-throat estimation in a San Andres formation well is shown in Figure 6.11, 
matched with a water-saturation profile (Martin et al., 1997). They noted that max-
imum flushing, as shown by high water saturations, coincided with the best flow 
units discriminated by the r35 values. Publication of their 1997 paper resulted in a 
spirited but gracious discussion by Lucia (1999) and a reply by Martin et al. (1999). 
Lucia’s basic contention was that the Winland equation had been successful in 
clastic reservoirs, but any realistic reservoir characterization must be rooted in rock 
fabric distinctions based on geological observations from core and outcrop. In their 
reply, Martin et al. (1999) once again acknowledged the difficulties posed by vuggy 
pore space, but emphasized that pore throats control permeability and are difficult 
to assess in rock-fabric observations, which are more closely keyed to pore-body 
properties. Whatever their viewpoint, all investigators agree that complex pore mor-
phologies in carbonates frequently create multimodal pore-throat distributions with 
a broad range of aspect ratios that defy simple characterization. In these instances, 
their heterogeneous character conflicts with the central idea of the Winland equa-
tion as an estimator of principal pore-throat radii.
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In a study of the San Andres formation in the Vacuum feld of New Mexico, Pranter 
(1999) applied the Winland equation, but revised the coefficients to honor capillary pres-
sure measurements from San Andres formation core. Pranter found that estimates of 
r35 pore-throat size from the San Andres core-based equation were generally larger than 
those computed from the original Winland equation, and speculated that the differences 
might be caused by higher proportions of bimoldic and intercrystalline pore types.

CARBONATE PETROFACIES PORE-THROAT SIZE DISTRIBUTIONS

Extensive work on the giant Hugoton gas field by the Hugoton Asset Management 
Project team created a large database that included many capillary pressure measure-
ments of cores from a variety of lithologies in the Lower Permian Chase Group and 
Council Grove group. For our purposes, a subset of all limestone capillary pressure 
curves was extracted to examine the pore-throat size characterization and its rela-
tionship to limestone textural classes. Capillary pressure curves that typify grain-
stone (GR), packstone-grainstone (PK-GR), packstone (PK), wackestone-packstone 
(WK-PK), and wackestone (WK) limestones are shown in Figure 6.12. When replotted 
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(PK-GR), packstone (PK), wackestone-packstone (WK-PK), and wackestone (WK) limestones 
from the Lower Permian Chase and Council Grove groups in the Hugoton gas field, Kansas.
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as saturation first differences versus capillary pressures rescaled as pore-throat radii 
(Figure 6.13), the Dunham textural classes are well differentiated by the dominant 
pore-throat sizes. Notice, however, that although distinctive, the modes of the lime-
stones are not as pronounced as those of the Atokan sandstones (Figure 6.2) when 
expressed on a saturation-difference scale. However, the fact that the limestones can 
be distinguished by a single mode rather than a more complex measure is encour-
agement that a characteristic pore-throat size may be a useful descriptor for these 
limestones.

On the basis of his laboratory work on hundreds of carbonates in the Thamama 
and Arab reservoirs of Abu Dhabi, Marzouk (1998) proposed a tripartite classifica-
tion of micropores (less than 0.3 microns), mesopores (between 0.3 and 4 microns), 
and macropores (greater than 4 microns) in pore-throat radii. He also observed that 
curves of the distributions of pore-throat sizes for typical rock types were strongly 
unimodal with subsidiary low peak responses in the microporosity range. These class 
boundaries are marked on the size distribution plot in Figure 6.13 and show that the 
grainstones are macropores, the packstones are mesopores, and the wackestones are 
micropores. This relationship provides a useful link between visual core descriptions 
and principal pore-throat sizes.

A crossplot of the modal pore-throat size versus permeability (Figure 6.14) shows 
a strong relationship (R-squared of 84.6 percent), which validates modal pore-throat 
sizes as appropriate petrofacies descriptors. There is also a strong relationship be-
tween these modal pore throats and predictions of the r35 pore-throat size by the 
Winland equation (Figure 6.15). However, there is a systematic bias in the rela-
tionship: modal pore throats are about double the size of the Winland equation r35 
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Hugoton gas field, Kansas.



1000

100

Pe
rm

ea
bi

lit
y,

 m
d

10

1

0.1

0.01

0.01 0.1 1

Modal pore-throat radius, microns

10 100

Figure  6.14:  Crossplot of modal pore-throat sizes and permeabilities measured in cores of 
limestones of the Chase and Council Grove groups from the Hugoton gas field, Kansas.

100
Macro

0.3 microns

4 microns
Meso

Micro

10

C
al

cu
la

te
d 

r3
5 
m

ic
ro

ns

1

0.1

0.01
0.01 0.1 1

Modal pore-throat radius, microns

10 100

Figure 6.15:  Crossplot of modal pore-throat sizes and predictions of the r35 pore-throat sizes 
by the Winland equation. Pore-throat class subdivisions are based on the size boundaries pro-
posed by Marzouk (1998).



[ 188 ]  Principles of Mathematical Petrophysics

estimates, particularly in the mesopore and macropore ranges. This observation 
echos the experience of Pranter (1999) in his work with the San Andres formation. 
Consequently, an r35 profile computed for these carbonates would be a useful semi-
quantitative descriptor for delineating flow units, but would be inadequate for the 
purpose of estimating the actual size of the principal pore throats.

The distribution of the nonwetting fluid saturation associated with the modal 
pore throat of each core sample is shown in Figure 6.16. The similar median satur-
ation values for grainstones (28.9 percent), packstones-grainstones (29.6 percent), 
and packstones (29.2  percent) are contrasted with a median of 49.9  percent for 
wackestones and an intermediate median of 34.0 percent for wackestone-packstones. 
These values, together with the bimodal appearance of the distribution, suggest dif-
ferent saturations associated with grain-supported and mud-supported limestones. 
The distribution was subdivided into two groups, where the partition value was 
located to minimize the variance within each group and maximize the variance be-
tween the two groups (Figure 6.16).

The saturation value of about 30 percent that characterizes the grain-supported 
limestones probably explains the consistent underestimation of the modal 
pore-throat size by the Winland r35 equation. Recalculation of the equation fitted to 
an r30 estimate would increase the estimates to higher values and more closely match 
the observations. This would validate approaches that attempt to link a character-
istic nonwetting fluid saturation with a principal pore throat. However, the range 

GR-PK

20

Fr
eq

ue
nc

y

10

0
0 10 20 30 40

Mercury saturation %

50 60 70 80

WK-PK

Grain-
supported WK

Mud-
supported

Figure 6.16:  Distribution of mercury saturations associated with modal pore throats, indexed 
by median values for grainstones (28.9 percent), packstone-grainstones (29.6 percent), pack-
stones (29.2  percent), labeled together as GR-PK, wackestone-packstones (34.0  percent) 
WK-PK, and wackestones (49.9 percent) WK. The distribution is subdivided into two parts that 
maximize the between-group variance and minimize the within-group variance. The two groups 
are interpreted as reflecting a differentiation between grain-supported and mud-supported 
limestones.



Por e-SyS t e m Fac ie S :  Por e t hroat S  a nd Por e Bodie S  [ 189 ]

of saturation values in the distribution, together with its bimodal aspect, suggest 
that a single value for nonwetting fluid saturation is only a broad approximation. 
Instead, an equation that makes a direct prediction of the modal pore-throat radius 
regardless of saturation is likely to be more efficient and potentially more accurate. 
A regression analysis of modal pore-throat radii based on core measurements of per-
meability and porosity (reference?) has an R-squared value of 88.5 percent and an 
equation of:

log( ) . . log( ) . log( )r kmode = + −1 179 0 616 1 071 Φ

where rmode is the modal pore-throat radius (microns), k is the permeability (mD), and 
Φ is the porosity (%).

The strong correlation between observed modal pore-throat radius and perme-
ability justifies its use for prediction in wells across the Hugoton gas field. Principal 
pore-throat radii were estimated from core measurements using a regression ana-
lysis of data from the Anadarko A-1 Flower “science well,” which was drilled into the 
Chase Group using foam to minimize invasion effects. The neutron-density gas effect 
shows a good concordance with estimated principal pore-throat variation, which, in 
turn, shows a good correspondence with the Dunham texture classes observed in the 
limestone core (Figure 6.17). Finally, gas production from the three drill-stem tests 
(DST) marked on Figure 6.17 are an excellent match with expectations from the core 
and log characterizations.

Principal pore-throat radii in the limestone capillary pressure database were sub-
divided by Dunham textural type and are shown as box plots in Figure 6.18. There 
is a systematic decline in median pore-throat radii by textural class, implying that 
a geomodel of lithofacies distributions could be populated by expectations of prin-
cipal pore-throat radii and, hence, permeabilities. However, the box plots also dem-
onstrate that characterization of the principal pore-throat radii by mean values and 
standard deviations should be evaluated carefully if the interquartile ranges demon-
strate marked asymmetry, as in the grainstones, packstone-grainstones, and pack-
stones. The asymmetric character can be easily accommodated in simulation models 
by selecting an appropriate nonnormal distribution.

Oomoldic limestones are classic examples of a dual-porosity system, and so their 
pore-throat characterization poses special challenges. The dual-porosity system of 
oomolds and interparticle porosity makes permeability difficult to predict because of 
the great variability in oomold interconnectivity, as discussed in Chapter 3. Textural 
measures of connectivity reflect both depositional facies and diagenetic processes of 
dissolution, cementation, and crushing, linked with modification by ground water 
that have caused either or both occlusion of pore space and improvement in oomold 
connectivity. An instructive example of this complexity is shown by the capillary 
pressure curves of five Pennsylvanian oomoldic limestone cores from Kansas (Figure 
6.19) and their pore-throat radii frequency distributions (Figure 6.20). The core 
samples have similar, high porosities, but a wide range of permeability that matches 
changes in the pore-throat size distribution. The two higher permeability samples 
show a strong but broad macrosized mode, as contrasted with the lower permeability 
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samples that show a progressive dispersion in pore throats and the loss of a dis-
tinctive mode. However, a regression analysis of pore-throat radii at different non-
wetting phase saturations shows a distinctive and strong R-squared of 91 percent at a 
saturation of 20 percent (Figure 6.21). The statistics imply that the pore-throat radii 
that contribute effectively to flow have higher values and that a principal pore throat 
can be identified with the r20 value in these facies. This finding matches the con-
clusion of Wardlaw and Taylor (1976), who observed that the twentieth percentile 
represents mercury saturation of the maximum connected pore-throat radius, from 
their extensive study of carbonate reservoir rocks. The relationship between the r20 
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pore-throat radius and permeability in these Pennsylvanian oomoldic limestone core 
samples is shown in Figure 6.22, together with the associated regression-analysis 
prediction function for estimation of the r20 pore-throat radius.

Pennsylvanian oolitic reservoirs in Kansas have geometries and architectures that 
are similar to modern oolite bodies in the Bahamas (Watney et al., 2006), and usu-
ally consist of multiple shoals, either stacked or en echelon, that formed in response 
to sea-level fluctuations. The diagenetically modified reservoir properties are linked 
with the original depositional facies when considered as architectural elements of 
shoal development (Byrnes et al., 2003). Grain-size variation, coupled with location 
on oolite buildups and interbedded carbonate mud deposits influenced the character 
and degree of diagenetic overprinting. An example of a Pennsylvanian oomoldic 
limestone section from Skelly #16 Colliver is shown in Figure 6.22. Correlation of 
this unit with neighboring wells showed that the section represents a single shoal 
body, and core examination identified two upward-coarsening bedsets. The upper 
bedset contains medium- to coarse-grained oomoldic grainstones overlying a bedset 
of fine to medium oomoldic grainstones. The grain-size character of these bedsets is 
duplicated by r20 pore-throat radii predicted from the core permeability relationship 
where mesosize throats are overlain by macrosize throats in this shoal.

The correlation between log-scaled permeability and porosity in core samples 
from this section is weakly positive (0.27), which is not surprising when considering 
the great range in permeability but similar porosities in the five oomoldic limestone 
cores with capillary pressure measurements. More intriguing is the higher correlation 
between the gamma-ray log measurement and the log-scaled permeability of −0.53. 
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This inverse relationship was observed by Watney et al. (2006) and interpreted to 
reflect that coarser-grained and better-sorted ooid facies have lower clay content, 
resulting in larger and better-connected oomolds. The gamma-ray and grain-size re-
lationship is consistent with general observations that have related limestone tex-
tural variation to computed gamma-ray log variation (c.f. Lucia, 2007). However, a 
more detailed interpretation of oomoldic connectivity should incorporate diagen-
etic processes of dissolution and cementation in addition to the depositional facies. 
Because the diagenesis of these oolitic shoals was controlled by processes linked to 
exposure, the recognition of the architectural elements of the units is an important 
consideration.

The development (and destruction) of secondary porosity systems by multiple 
diagenetic episodes often creates pore-throat distributions that are difficult to rep-
resent adequately by a single principal pore throat. An instructive study of a wide 
range of pore-throat variability within a single formation was provided by Luo and 
Machel (1995). They selected the Grosmont formation in Alberta as a suitable sub-
ject for the study of carbonate reservoir properties at all scales because the unit was 
well known to be highly heterogeneous. This Upper Devonian formation consists of 
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extensively dolomitized and karstified platform and ramp carbonates with complex 
associations of homogeneous, multilayered, dual- and triple-porosity systems char-
acterized by fractured, channeled, and pressured solution features. The Grosmont 
formation consists of shallowing-upward cycles composed of lithofacies designated 
by a letter convention as a to g (Figure 6.23). The best reservoir rocks are lithofacies e 
(vuggy, massive mudstones to grainstones) and lithofacies f (laminated mudstones). 
Both have abundant primary porosity with additional secondary porosity created by 
diagenetic dissolution.

Luo and Machel (1995) made capillary pressure measurements of Grosmont for-
mation core samples and tabulated the statistics of r20, average, median, mode, and 
standard deviation of pore-throat radii. A crossplot of r20 pore-throat radius versus 
permeability for lithofacies e and f (Figure 6.24) shows only weak positive trends, 
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which is to be expected for carbonates whose pore-throat distribution has been 
modified by a variety of diagenetic processes. However, the two lithofacies show dis-
tinctive differences, in that permeabilities in lithofacies f are higher in permeability 
over a similar porosity range to lithofacies e, where vug development may account 
for poorer connectivity and heterogeneity. An improved analysis can be made by 
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recognizing once again that pore-throat petrofacies are not necessarily concordant 
with lithofacies, but can show cross-cutting relationships that differentiate flow 
units from rock-type units.

Luo and Machel (1995) noted that multiple reservoir types occurred within each 
lithofacies and so identified six types of pore-throat textures in the Grosmont for-
mation for which the representative capillary pressure curves and pore-throat size 
frequencies are shown in Figure 6.25. These textures exhibit unimodal, bimodal, and 
polymodal pore-throat distributions that require multiple statistics for their descrip-
tion. Importantly, these statistical descriptors should capture pore-throat properties 
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that can be related to reservoir quality. The relationships between the average, mode, 
and median pore-throat radii were used in the interpretation of the effects of dissol-
ution on matrix heterogeneity. For a normal distribution, these statistics should be 
approximately equal. However, the mode of the Grosmont data takes progressively 
higher values with increasing average pore-throat radius, which implies that dissol-
ution enlarged the pore throats. At smaller pore-throat sizes, the median, mode, 
and average pore-throat radii are similar, suggesting that dissolution did not sub-
stantially contribute to the reservoir heterogeneity at this scale. Dolomite dissol-
ution appears to have created relatively large pores and pore throats, rather than 
microporosity. The average pore-throat radius is positively correlated with standard 
deviation, and this confirms the interpretation of a higher degree of heterogen-
eity at greater pore-throat sizes. It was concluded that the single most important 
pore-throat radius statistic was the twentieth percentile r20 value, which matches 
the assessment by Wardlaw and Taylor (1976) that r20 represents the maximum con-
nected pore-throat radius in many carbonate reservoir rocks with either single- or 
dual-porosity systems.

In summary, the key descriptor of pore-throat petrofacies is the principal pore 
throat, which shows the maximum correlation with permeability and so represents 
the equivalent mean hydraulic radius of the rock. Injection of a nonwetting phase 
(typically mercury) into a core sample at increasing pressure generates a cumula-
tive record of access to successively smaller pore throats. Core petrophysicists have 
sought to distinguish a characteristic saturation value at which the major connected 
pore throats are breached and to link this with the associated pore-throat radius in a 
predictive equation based on porosity and permeability. The benefit of this equation 
is that conclusions from porosimetry can be applied to routine core measurements 
of porosity and permeability in the definition of flow units keyed to specific principal 
pore-throat radii measured in microns.

The widely-used Winland equation sets the characteristic nonwetting phase sat-
uration value at 35 percent, although others use the Pittman equation estimate at 
a saturation of 25 percent. The pore-throat radius linked with these characteristic 
saturations shows a close match with the pore-throat radii modes that are usually 
strongly developed in the intergranular porosity systems of sandstones. The ap-
plication of the Winland equation to single-porosity carbonate systems appears to 
underestimate principal pore-throat sizes, and if there is a characteristic principal 
pore-throat saturation, it may be higher in mud-supported carbonates and lower 
than 35 percent in grain-supported carbonates. Larger pore throats are developed 
in carbonates with secondary porosity dissolution, and an r20 estimate of principal 
pore-throat size is often a useable estimate. However, diagenetic features in carbon-
ates often introduces extra complexity that requires careful integration of geological 
history, and the principal pore-throat radius may not be uniquely determined by a 
single statistic of the pore-throat radii distribution.

Finally, estimates of the principal pore-throat radius can be assigned to size 
classes whose boundaries have been linked with textural classes of grain or crystal 
size. These resulting pore-throat facies can be used as flow-unit architectural ele-
ments and mapped laterally in the development of dynamic models of flow. The 
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disposition of these petrofacies elements will show a strong concordance with the 
hydraulic flow units (HFU) described in Chapter 3, because they are defined by the 
same input measurements. However, their development and interpretation is more 
closely linked with the geological aspects of rock-matrix texture, while hydraulic flow 
units use an engineering perspective.

PORE-BODY SIZE DISTRIBUTIONS FROM NUCLEAR MAGNETIC 
RESONANCE MEASUREMENTS

Although pore-throat sizes control flow properties of rocks, pore-body sizes deter-
mine which part of the pore volume can be considered as effective for fluid storage 
and mobility. Pore bodies are easier to evaluate visually than pore throats, so many 
petrographic studies have been made to characterize their volumes and size distri-
butions. Traditional methods of point counting the pore space in thin sections gave 
statistically weak estimates of porosity, while evaluating pore sizes and shapes were 
both extremely tedious and challenging.

The introduction of computer processing of rock images (e.g., Ehrlich et  al., 
1984)  dramatically resolved the statistical problem of small sample sizes and 
removed questions of bias in visual estimations. Individual pores could be distin-
guished and their perimeters and areas measured. In addition to characterizing pore 
size, the perimeter-to-area ratio is a measure of pore shape. The shape aspects of 
pores have important implications for understanding the meaning of pore “sizes” 
estimated from nuclear resonance logging, especially in the complex pore systems 
of carbonate rocks. So, for example, Anselmettii et al. (1998) reported from their 
image analyses of carbonates from the Great Bahama Bank that moldic pores and 
micropores are well rounded with low shape ratios. In contrast, interparticle pores, 
which have more complex geometry, have high shape ratios. The major limitation 
of conventional image analyses stems from their use of two-dimensional represen-
tations of three-dimensional solids and the inherent distortions in estimates of 
three-dimensional reservoir pore attributes. Recent advances in computed tomog-
raphy (CT) scans have overcome this dimensional limitation, but their relatively high 
cost, coupled with the large quantity of low-cost legacy core image data, has tended 
to focus efforts on understanding the “meaning” and potential usefulness of trad-
itional measurements.

The application of nuclear magnetic resonance (NMR) log responses to pore-size 
measurement in both core and borehole logging applications has been the subject 
of extensive research in recent decades (e.g., Kenyon, 1992). The physical basis for 
the NMR tool measurement and its use in permeability estimation has already been 
reviewed in Chapter 3 of this book. In this chapter, we are concerned with pore fa-
cies characterization and will focus our attention on the pore-size implications of 
NMR relaxation-time distributions obtained by borehole logging. Kleinberg et  al. 
(1993) showed that T2 times measured at low frequency and short pulse spacing 
have almost the same information about pore sizes as T1 longitudinal relaxation 
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times. Consequently, pore-size conclusions from T1 measurements, which are more 
common in core studies, can be related directly to subsurface measurements of T2 
acquired by logging tools (Kleinberg, 2001).

The T2 time reflects the relaxation of protons in terms of three components, as 
expressed by the equation:

1
2

1
2

1
2

1
2T T b T s T d

= + +

Where T2b, T2s, and T2d are the transverse relaxation times for bulk fluid, surface 
effects, and diffusion effects. The bulk-fluid relaxation time corresponds to an infin-
itely large container, and its value of about three seconds makes it so small that it 
can be eliminated from consideration. The effect of diffusion is also generally very 
small, so that its relaxation time can be ignored unless the rock contains vugs. Con-
sequently, the T2 relaxation time is dominated by surface effects in simple, homo-
geneous pore systems that are characterized by interparticle porosity. The surface 
relaxation time is controlled by the surface-to-volume ratio as given by the equation:
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2

2
T s

S
V

= ρ

where ρ2 is the surface relaxivity, measured in microns per second, S is the pore 
surface area, and V is the pore volume. The surface relaxivity measures the ability 
of the pore wall to promote proton relaxation and is especially sensitive to para-
magnetic ions such as iron and manganese (Kleinberg et al., 1994). Surface relax-
ivity can be measured from core samples and shows a wide range of values dictated 
by compositional variability. However, Chang et  al. (1994) suggested a surface 
relaxivity of fifteen microns/second for sandstones (attributed to iron content) 
and a value of five microns/second for carbonates, reflecting their lower content 
of impurities. In computer simulations, Toumelin and Torres-Verdin (2004) chose 
a range of ten to thirty microns/second as reasonably representative of sand-
stones, and one to seven microns/second as representative of carbonates. It is 
important to remember that the surface relaxivity is estimated from core mea-
surements of surface and volume, so the value represents a calibration transform 
that may differ according to the method of core measurement; it is not an inde-
pendent physical property. In addition, relaxivity will vary according to the nature 
of the wetting fluid, so oil relaxivity will be different from water relaxivity and will 
vary according to the wettability of the grain surface. In this text, we will assume a 
water-wet surface as our baseline model for pore-size evaluation, keeping in mind 
that hydrocarbon effects may affect pore-size evaluations by causing a shift of T2 
distributions.

Because area has two dimensions and volume has three, the ratio (S/V) is a measure 
of length and can be expressed as the pore radius of a standard pore shape. So,
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2
T s

G
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where r is the pore radius and G is a geometric shape factor. If a pore is spherical, G 
has a value of three; for a tubular pore, G is two; and for a planar (fracture) pore, G is 
one. Real pores have more complex and diverse shapes and will show differences with 
respect to pore size as demonstrated in image analysis studies (e.g., Anselmetti et al., 
1998). Consequently, a simple rescaling of T2 relaxation times to an equivalent pore 
“radius” is an unnecessary and potentially misleading oversimplification. Instead, 
the relaxation time is a direct function of a pore length measure, whose meaning 
must be interpreted in the context of the formation pore geometry that was created 
during its depositional and diagenetic history. Any given T2 distribution therefore 
represents an expression of pore sizes that are best considered in terms of facies.

NMR FACIES IN SANDSTONES

The term “NMR facies” was probably first introduced by Lowden (1996) and further 
discussed by Walsgrove et al. (1997), who defined it as “a set of similar NMR distri-
butions that summarize the characteristics of the rock” in their study of a magnetic 
resonance log of a clastic succession in a North Sea well. They partitioned the fa-
cies by a supervised classification using criteria that included porosity, permeability, 
bulk volume water, capillary pressure data, pore geometry models, and lithological 
descriptions. In this chapter, we will consider both supervised and unsupervised 
methods of NMR facies analysis.

The relationship between the distribution of T2 relaxation times and pore sizes 
in sandstones should be simpler than in the complex pore network of carbonates, 
which will be reviewed below. Relaxation times for sandstones generally range be-
tween ten and five-hundred milliseconds (Delhomme, 2007). The pores are primarily 
interparticle, and their size distribution closely mirrors the size distribution of the 
grains, but modified by sorting, cementation, and other processes.

Sedimentologists have used a variety of numerical methods to characterize grain 
size distributions, ranging from arbitrarily chosen percentiles to more systematic 
descriptive statistics. Although the sizes of sedimentary particles occur on a con-
tinuum, grain size is almost always measured, displayed, and analyzed in discrete 
form as histograms composed of intervals or bins. Krumbein (1936) proposed using 
the negative logarithm to the base two as a transform of the grain diameter measured 
in millimeters, which results in classes that correspond to those in the Wentworth 
grade scale (Wentworth, 1922). Grain size distributions are commonly represented 
by a lognormal model, which reflects a multiplicative process of grain breakage that 
is applicable to particulate matter. On a logarithmic scale, the arithmetic average 
corresponds to the geometric average of the sizes on an arithmetic measurement 
scale. This statistic is the first moment and locates the centroid of the distribution. 
Krumbein (1936) described the computation of higher-order moments; the second 
moment expresses the dispersion, and the third moment expresses the skewness of 
a distribution. The “method of moments” presented a way for sedimentologists to 
condense grain size distributions to a set of statistics for purposes of classification 
and genetic studies.
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The same concept of moment calculation and interpretation is applicable to T2 
distributions of clastics for characterizing their pore sizes, and, by implication, the 
properties of their associated grain size distributions. The first moment of the T2 
distribution is widely used as the pore-size term in the SDR equation to estimate per-
meability (Kenyon, 1992). The geometric average in the SDR equation is equivalent 
to the first moment, given by the equation:
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where φi is the porosity assigned to the ith bin and T2i is the transverse relaxation 
time of the ith bin. Similarly, the second moment is calculated by:
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The second moment expresses the dispersion about the origin, but can be referenced 

to the centroid:  n m m2 2 1
2= − . From this, the standard deviation s n= 2  can be calcu-

lated, which expresses the dispersion about the centroid in units of relaxation time. 
Finally, the third moment is calculated by the equation,
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Higher moments also can be computed, such as the fourth moment, which measures 
kurtosis or “peakedness.” Although kurtosis is easy to calculate, it is difficult to in-
terpret its meaning as related to size distributions, unlike the first three moments, 
which represent location, dispersion, and degree of asymmetry.

The NMR log of a Pennsylvanian Stalnaker sandstone section measured in a well 
in southern Kansas (Figure 6.26) is used as an example for the interpretation of the 
moments of the distribution of the T2 relaxation times. The depositional environ-
ment of the Stalnaker sandstone in this area has been interpreted as deltaic, with 
burrowed, coarsening-upwards fine-grained sandstone sequences produced by pro-
grading delta lobes succeeded by fining-upward sequences with abundant plant ma-
terial, which are suggestive of channels in a delta-plain setting (Walton and Griffith, 
1985). The image log of the T2 distribution in the Stalnaker sandstone (Figure 6.26) 
shows a strong mode throughout the unit, with a secondary mode that indicates 
a patchy development of finer pore sizes. This suggests that the Stalnaker sand-
stone consists of distinctive zones rather than being homogeneous. At a large scale, 
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the sandstone interval is clearly subdivided into two parts that are separated by a 
calcite-cemented sandstone.

A log of the first three moments of the distribution of the T2 relaxation times 
is shown in Figure 6.27. In the lower sandstone, the first moment shows a sys-
tematic upward increase in relaxation time that reflects increasing pore size, and, 
by implication, increasing grain size. The pattern is consistent with an interpret-
ation of prograding delta lobes from a core in a nearby well (Walton and Griffith, 
1984). Three zones can be discriminated within this lower sandstone by match-
ing clay content inferred from the computed gamma-ray log with values of the 
second (dispersion) and third (skewness) moments. Zones at a finer scale could be 
made from a more detailed subdivision of the second- and third-moment curves. 
Above the calcite-cemented sandstone that terminates the lower sandstone sec-
tion, the first moment of the T2 relaxation time shows a distinctive decrease, 
representing finer pore and grain sizes. This upper sandstone appears to be zoned 
at different scales, with indications of both coarsening- and fining-upward pore- 
and grain-size distributions. From comparisons with nearby wells, the upper 
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Figure 6.26:  Computed gamma-ray (CGR), standard gamma-ray (SGR), photoelectric-factor, 
neutron and density porosity (sandstone equivalent units), and T2-relaxation-time image logs 
for a Stalnaker sandstone section in a southern Kansas well.
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sandstone section can be classified as a delta-plain deposit representing a variety 
of depositional environments.

The strong primary mode of the T2 relaxation times throughout the entire Stal-
naker sandstone means that the first moment is the most important descriptor of 
changes in gross pore size. The dispersion and skewness moments are more useful for 
defining zonal subdivisions that can be interpreted as individual beds that differ in-
ternally in their pore and grain sizes, which are responses to short-term depositional 
processes. A clear distinction between the upper and lower sandstone subdivisions 
is seen on the crossplot of the computed gamma-ray log versus the first moments of 
the T2 relaxation time (Figure 6.28). The lower sandstone has a coarsening-upward 
trend of coarser pores and lower clay content, while the upper sandstone becomes 
finer upward, is more clay-rich, and has smaller pores. These patterns are consistent 
with interpretations of the lower sandstone as the product of prograding delta lobes 
and the upper sandstone as delta plain deposits.
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Figure  6.27:  Computed gamma-ray (CGR), standard gamma-ray (SGR), T2-relaxation-time 
centroid, dispersion, and skewness for a Stalnaker sandstone section subdivided into moment 
facies zones in a southern Kansas well.
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NMR PORE-SIZE INTERPRETATION IN CARBONATES

The interpretation of T2 relaxation times in carbonates is more complex than the in-
terpretation in sandstones, which generally have relatively simple and homogeneous 
distributions of interparticle pores. The radically different sizes and shapes of pores 
within carbonates are the result of the multiplicity of diagenetic processes of dissol-
ution, cementation, and mineral transformation. Multimodal pore distributions are the 
norm rather than the exception. As a consequence, conclusions drawn from the study 
of one carbonate unit may be misleading when applied to another. Every carbonate 
interval should be considered on a case-by-case basis. However, it is possible to relate a 
carbonate reservoir to a catalog of published magnetic resonance data, provided there is 
an acceptable match with an analog that has similar pore types and diagenetic history.

As noted earlier, the T2-relaxation-time measurement has three components: the 
bulk, surface, and diffusion effects. For interparticle porosity, bulk and diffusion 
effects are very small compared to the surface relaxivity and can be neglected. As a re-
sult, the measured T2 relaxation times are dominated by the pore surface-to-volume 
ratio and are proportional to a length measure of the pore bodies. Sandstone surfaces 
are more efficient than carbonates in relaxing nuclear magnetism, and the variability 
in carbonate composition and texture creates a wider range of values for surface 
relaxivity. So, for example, Quintero et al. (1999) reported that mud-supported car-
bonates have lower relaxivities than grain-supported carbonates. This makes the 
conversion from relaxation time to pore size more difficult to ascertain. More fun-
damentally, the enormous variation in carbonate pore shape calls into question the 
very meaning of the “radius” of a pore.
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Figure  6.28:  Crossplot of computed gamma-ray (CGR) against T2-relaxation-time centroid 
that differentiates coarsening-upward trend of prograding delta lower Stalnaker sandstone with 
fining-upward delta-plain upper Stalnaker sandstone.
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By comparing vugs observed in the core with the T2 relaxation times, Chang et al. 
(1994) concluded that the porosities of carbonates whose relaxation times exceeded 
750 milliseconds showed a good match with vug volumes estimated by image point 
counting. In vuggy carbonates, protons within the larger pores have a much lower 
likelihood of interacting with pore surfaces, so the bulk diffusion term can be signifi-
cant. More importantly, diffusion of protons between the larger and smaller pores 
can cause a decrease in the proportion of measured finer pores. This will shift the 
proportion of larger pore relaxation times downward to lower values (Ramakhrisna, 
1999). The net effect may be the merging of the two peaks of a dual-porosity system 
into a single mode in the T2-relaxation-time distribution (Delhomme, 2007). These 
circumstances explain some of the anomalies that puzzled early workers in magnetic 
resonance studies of carbonates, when compared to the more successful applications 
in sandstones. These explanations are helpful guides to a realistic interpretation of 
carbonate pore distributions but suggest that strategies expressed in terms of facies 
are more likely to be fruitful than attempts at numerical transformations.

In working with magnetic resonance data from the Shuaiba Formation, Lodola 
(2004) computed the mean, median, variance, skewness, and ninetieth percentile 
statistics to characterize the shape of the T2-relaxation-time distributions. He con-
cluded that the ninetieth percentile was the best discriminator of pore types for 
separating vugs from smaller pores. The other statistics were more difficult to inter-
pret because of the compounding effect of multiple pore-type distributions. Lodola 
(2004) decomposed the T2 distributions by partitioning them successively into as 
many as three lognormal distributions. The means and variances of the lognormal 
distributions were estimated through a best-fit Newton-Raphson procedure that 
minimized the sum of the squared errors. He concluded that samples dominated by 
depositional pore types showed no increase in the quality of the fit of several dis-
tributions over the fit of a single lognormal distribution. In contrast, samples with 
facies-selective pores and especially diagenetic porosity showed better fits when par-
titioned into multiple lognormal distributions.

NMR-PARTITIONED POROSITY AND DUNHAM TEXTURAL CLASSES

The issue of the discrimination of vugs and their partitioning into connected and 
nonconnected pores has been discussed in Chapters 2 and 3, so we will focus here 
on the integration of NMR pore facies with Dunham carbonate textural classes. 
Computed gamma-ray, photoelectric factor, neutron and density porosity (lime-
stone equivalent), and magnetic resonance image logs are shown in Figure 6.29 for 
a section of Cambro-Ordovician Arbuckle limestone in a southern Kansas well. This 
section consists of dolomitic mudstones, packstones, and grainstones deposited as 
cyclic peritidal units that have minimal vug porosity. The T2 distribution shows a 
generalized bimodal character that reflects pore-size variability that is potentially 
related to carbonate lithofacies. Histograms of T2 relaxation times for a larger set of 
core observations of Dunham textural classes in the Arbuckle limestone are shown 
in Figure 6.30. The histograms clearly show a bimodal distinction between longer 
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and shorter relaxation times. There is a clear differentiation between the larger pore 
mode in grain-supported grainstones and packstones, contrasted with the secondary 
mode of smaller pore sizes associated with mudstones. Consequently, the distribu-
tion can be subdivided between “microporosity” and “macroporosity.”

A supervised classification of mudstones, packstones, and grainstones was made 
by a discriminant function analysis on the basis of the percentage of macroporosity 
and the computed gamma-ray (CGR) log. The results of classifying the Arbuckle lime-
stone section (Figure 6.29) are shown in Figure 6.31, with log tracks of the computed 
gamma-ray curve, proportion of pore space based on T2 relaxation times, the Dun-
ham lithofacies as observed in the core, and the “Punham facies” classified by petro-
physics. In Figure 6.31, the T2 relaxation times have been shaded as three intervals 
that represent the primary and secondary modes (microporosity and macroporosity) 
and the intervening time interval of the Dunham-class T2 histograms. Deflections 
of the computed gamma-ray curve to higher values suggest that increased clay con-
tent differentiates mudstones from grain-supported grainstones and packstones 
and is matched by complementary shifts in the T2 relaxation times. Cleaner car-
bonates have higher proportions of larger pores and more shaly carbonates have 
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Figure 6.29:  Computed gamma-ray (CGR), standard gamma-ray (SGR), photoelectric-factor, 
neutron and density porosity (limestone equivalent units), and T2-relaxation-time image logs 
for an Arbuckle limestone section in a southern Kansas well.
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higher proportions of smaller pores. The informal terminology of “Punham facies” 
is applied here to emphasize the distinction between Dunham grain-size textural fa-
cies and NMR pore-size facies. While there appears to be a good overall correlation, 
there is no implicit physical reason why a pore-size driven classification should give 
an exact prediction of a Dunham texture.

This supervised classification case study demonstrates the complementary nature 
of Dunham lithofacies classes and pore-size distributions not only as a conceptual 
model but also a model with quantitative descriptive and predictive power. The pre-
diction model could be extended to uncored wells whose lithofacies can be classified 
based on T2-relaxation-time distributions. Alternatively, a derived magnetic reson-
ance log could be approximated by plotting the expectations of T2 relaxation times 
based on the Dunham textural classes observed in the core.

1

0

Grainstones

Packstones

Mudstones

1

Po
ro

si
ty

 u
ni

t

0

1

0
4 8 16 32 64 128

T2 bins, milliseconds

256 512 1024 2048

Figure  6.30:  Histograms of average T2-relaxation-time bin porosities for core intervals 
described as mudstones, packstones, and grainstones in the Arbuckle limestone in a southern 
Kansas well.
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NMR FACIES IN CARBONATES

In an alternative approach, T2-relaxation-time logs can be analyzed in an unsuper-
vised manner to extract intrinsic associations for interpretation and application. 
A principal components analysis was made of the T2 relaxation times of the entire 
Arbuckle lmestone formation. In doing this, the data set was expanded beyond sub-
tidal and peritidal mudstones, packstones, and grainstones to include multiple brec-
ciated intervals that were created by periods of extensive karstic weathering that led 
to the development of vug-size pores over a range of scales. Principal components re-
veal the intrinsic structure of the T2 relaxation times within associations of intervals 
or bins that are related by distinctive pore-size groupings. Table 1 gives the percent 
contribution by each porosity interval to each principal component. There are ten 
T2 porosity intervals and the analysis indicates that there are five pore-size types. 
The contributions to the first three principal components are shown in Figure 6.32 
and can be informally labeled the macro-, meso-, and micropore subdivisions of the 
matrix porosity; this classification is consistent with the T2-relaxation-time range. 
The range encompassed by macro- and mesopores coincides with the principal mode 
of the lithofacies histogram shown in Figure 6.30. This substantiates the idea that 
this mode is actually the merger of two distinctive pore-size types. Consequently, the 
bimodal character of the matrix-porosity T2-relaxation-time distributions observed 
in the lithofacies should be attributed to a triple pore system.

Bins representing longer relaxation times discriminate vugs (in this case study, 
they are called “megapores”) and their contributions are restricted to several 
higher-order principal components. Bins that represent the shortest relaxation 
times (nanopores) also contribute to higher components; their values are consistent 

TABLE 6.1.  PERCENT CONTRIBUTIONS OF T2 BIN POROSITIES TO EACH PRIN-

CIPAL COMPONENT, WITH PERCENT TOTAL VARIABILITY ACCOUNTED FOR BY 

EACH PRINCIPAL COMPONENT INDIVIDUALLY AND CUMUL ATIVELY

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

4ms 0.2 0.1 0.0 0.2 0.2 5.9 18.8 22.0 49.5 3.3

8ms 0.8 0.0 2.6 0.0 15.7 26.8 23.2 0.8 26.6 3.5

16ms 1.7 0.3 47.4 4.7 25.0 0.0 8.3 4.5 6.6 1.4

32ms 1.1 0.2 39.8 2.5 19.4 16.0 6.6 9.0 3.7 1.7

64ms 5.9 12.0 0.6 48.9 1.8 5.8 0.4 21.4 1.3 1.8

128ms 1.8 63.1 3.1 0.0 7.1 3.0 2.8 16.5 0.3 2.3

256ms 29.2 23.3 1.8 16.9 8.1 2.7 5.8 6.2 0.0 6.0

512ms 49.0 0.3 2.9 16.9 0.9 3.0 7.3 2.8 1.0 15.9

1024ms 10.1 0.5 0.4 9.5 17.1 20.1 5.8 0.1 3.6 32.7

2048ms 0.3 0.1 1.4 0.3 4.6 16.6 21.1 16.7 7.5 31.4

Percent contribution of the principal components to the total variability:

Individual 38.9 15.7 15.1 11.8 8.1 4.9 2.7 1.6 0.7 0.5

Cumulative 38.9 54.6 69.7 81.5 89.6 94.5 97.3 98.8 99.5 100.0
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with clay-bound water. It is interesting to note that mega- and nanopores jointly 
contribute to higher-order principal components, suggesting they are associated in 
clay-rich brecciated zones. Following this interpretation, the first principal compo-
nent discriminates matrix porosity associations in contrast to vuggy and clay-rich 
karstic breccias in the remaining principal components.

A crossplot of the first two principal component scores from T2-relaxation-time 
distributions of the Arbuckle limestone is shown in Figure 6.33; symbols indicate 
mudstones, packstones, and grainstones. The crossplot represents 54.6 percent of 
the total variability in the T2-relaxation-time distributions, with the first principal 
component representing macropores and the second component dominated by mes-
opores. The locations of the centroids of the three lithofacies match our expectations 
for the pore-size associations seen in supervised lithofacies analyses. In this plot, the 
principal mode of the T2-relaxation-time distributions of the observed lithofacies is 
mapped in terms of the larger matrix pores. The third principal component captures 
the microporosity and would be plotted on an axis orthogonal to this plot.
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Figure 6.32:  Percent contributions of T2 relaxation times to the first three principal compo-
nents in the Arbuckle limestone in a southern Kansas well.
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All three matrix porosity pore-size types can be extracted from the first three prin-
cipal components and plotted on ternary diagrams in order to clarify the interrela-
tionships between pore-size and lithofacies. In Figure 6.34, mudstones, packstones, 
and grainstones for the Arbuckle limestone formation are shown on composition 
triangles in terms of macro-, meso-, and microporosity. The mudstones show a broad 
scatter of pore sizes, but microporosity is relatively higher than in grainstones and 
packstones. Packstones and grainstones both tend towards macroporosity, but they 
overlap, reflecting their definition as members of a continuum of grain-supported 
texture classes. The plot of grainstones is interesting because it indicates that there 
are two types, distinguished by their relative proportions of meso- and macropores. 
The majority are coarser grainstones with high macropore content. These are distinct 
from finer grainstones dominated by micro- and mesopores; these were identified in 
a subsequent examination of core as fine-grained peloidal grainstones.

Similar approaches to carbonate categorization have been made for major reser-
voirs in the Middle East, using the magnetic resonance relaxation time as one facet 
of an integrated log and core analysis (Ramamoorthy et al., 2008). The identification 
of mineralogy and lithology was followed by the partitioning of porosity between 
pore geometry components using magnetic resonance logs in conjunction with bore-
hole imagery and full waveform acoustic logs. An example of a ternary pore-size dia-
gram resulting from this integrated procedure is shown in Figure 6.35, where the 
triangle is subdivided between pore-system classes for the purpose of improving 
permeability estimates (Hassall et al., 2004). This approach is more petrophysically 

G

P
M

KEY: Mudstone Packstone Grainstone

PC1

PC2

C
en

tr
oi

ds

G

2

1

0

–1

–2

–3 –2 –1 321

PMCentroids

Figure  6.33:  Crossplot of first two principal-component scores calculated from 
T2-relaxation-time porosities indexed by core observations of mudstones, packstones, and 
grainstones in the Arbuckle limestone in a southern Kansas well.
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Figure  6.34:  Ternary composition plots of mudstones, packstones, and grainstones in the 
Arbuckle limestone in a southern Kansas well. End members are micro-, meso-, and macropo-
rosities identified by principal component analysis of T2-relaxation-time porosities.

Macro

Vugs

Long T2 cutoff
~ 5 microns

~ 0.5 microns
short T2 cutoff

Micro Meso

Figure  6.35:  Ternary diagram with micro-, meso-, and macroporosity endmembers parti-
tioned into eight petrophysical rock types based on NMR logs in conjunction with borehole im-
agery. Modified from Hassall et al. (2004), Used with permission © 2004 Society of Petroleum 
Engineers.

driven, so that the classes are petrofacies in nature, although they are closely linked 
with associated lithofacies.

Conclusions from Cretaceous limestones of the Middle East will show both simi-
larities and differences from Cambro-Ordovician dolomites of the American Mid-
west. Similar patterns of pore-size development result from the same processes 
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of deposition and diagenesis, but their complex interplay results in characteristics 
that are peculiar to every stratigraphic interval. Each carbonate formation must be 
considered independently, using all available logs to augment the information from 
magnetic resonance logging. Suites of modern well logs provide an extraordinary 
amount of information. Current research is focused on the use of this information 
and the development of systematic strategies to clarify carbonate pore systems. This 
requires geometrical measures of pore characteristics that are meaningful conceptu-
ally and can be used in the emerging discipline of digital petrophysics.
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CHAPTER 7

Saturation-Height Functions

INTEGRATION: THE SATURATION-HEIGHT MODEL

As observed by Worthington (2002), “The application of saturation-height functions 
forms part of the intersection of geologic, petrophysical, and reservoir engineering 
practices within integrated reservoir description.” It is also a critical reference point 
for mathematical petrophysics; the consequences of deterministic and statistical pre-
diction models are finally evaluated in terms of how closely the estimates conform 
to physical laws. Saturations within a reservoir are controlled by buoyancy pressure 
applied to pore-throat size distributions and pore-body storage capacities within a 
rock unit that varies both laterally and vertically and may be subdivided into com-
partments that are not in pressure communication. Traditional lithostratigraphic 
methods describe reservoir architecture as correlative rock units, but the degree to 
which this partitioning matches flow units must be carefully evaluated to reconcile 
petrofacies with lithofacies. Stratigraphic correlation provides the fundamental ref-
erence framework for surfaces that define structure and isopach maps and usually 
represent principal reflection events in the seismic record. In some instances, there 
is a strong conformance between lithofacies and petrofacies, but all too commonly, 
this is not the case, and petrofacies must be partitioned and evaluated separately. 
Failure to do this may result in invalid volumetrics and reservoir models that are in-
adequate for fluid-flow characterization.

A dynamic reservoir model must be history matched to the actual performance of 
the reservoir; this process often requires adjustments of petrophysical parameters to 
improve the reconciliation between the model’s performance and the history of pro-
duction. Once established, the reservoir model provides many beneficial outcomes. 
At the largest scale, the model assesses the volumetrics of hydrocarbons in place. 
Within the reservoir, the model establishes any partitioning that may exist between 
compartments on the basis of pressure differences and, therefore, lack of commu-
nication. Lateral trends within the model trace changes in rock reservoir quality 
that control anticipated rates and types of fluids produced in development wells. 
Because the modeled fluids represent initial reservoir conditions, comparisons can 
be made between water saturations of the models and those calculated from logs in 
later wells, helping to ascertain sweep efficiency during production. The model can 
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be used to estimate initial water saturations in older wells that lack resistivity logs or 
whose resistivity logs are unreliable. A major problem with older resistivity measure-
ments is their coarse vertical resolution as contrasted with porosity measurements, 
so water saturations in thin sandstone beds are poorly evaluated and the model may 
provide inaccurate estimates. In some underpressured reservoirs, the resistivity log 
measurements may be compromised by deep invasion.

There are a number of saturation-height methods used whose relative merits have 
been discussed in the oil and gas industry (sometimes heatedly). Before evaluating 
some of the more popular approaches, it is important to review the basic elements of 
a reservoir in terms of both its rock properties and the distribution of fluids. Fortu-
nately, there is common agreement on this aspect because the reservoir is the result 
of the operation of physical laws. The debate centers on what are the appropriate res-
ervoir descriptors to be used and in what formulation to generate robust predictors 
of saturation at any location within the reservoir.

THE BASICS OF RESERVOIR SATURATION PROFILES

A schematic representation of the fluid distribution in a simple, homogeneous res-
ervoir is shown in Figure 7.1. Migrating oil (and/or gas) has completely filled the 
anticlinal structure above the spill point. The free-water level (FWL) coincides with 
the spill point in this example because the trap is completely charged. Notice that 
the FWL does not coincide with the oil-water contact (OWC), which is the deepest 
zone in which oil will flow (as well as water). A minimum threshold entry pressure 
is required for the hydrocarbons to penetrate the largest pore throats. The controls 
for the fluid distribution and fluid production in this reservoir are found in the equi-
librium between the buoyancy pressure exerted by lighter hydrocarbons moving up-
ward and the resistance exerted by capillary forces that hold the wetting phase of 
formation water on the pore surfaces. As hydrocarbons move upward, the obstacles 
to the movement of the oil globules are the constrictions of the pore throats, rather 
than the pores themselves.

A conventional rock has a distribution of progressively smaller pore-throat sizes 
that will be penetrated at different heights above the FWL as the buoyancy pressure 
increases. Immediately above the FWL, the buoyancy pressure is very low, and at an 
entry (or displacement) pressure, the largest pore throats are breached by hydrocar-
bons. The majority of pores are still completely filled with water. At this level, some 
minor oil staining may be noticed in the drill cuttings. Core samples will also show 
staining and low oil saturations. However, if a production test is run, the produced 
sample will be entirely water. The oil remains behind in the rock as isolated globules 
and constitutes “residual oil saturation,” Sor. Moving higher above the FWL, the pro-
duced fluid changes from water only to water with a small oil cut. This level marks the 
oil-water contact at the base of the transition zone and occurs where the increased 
buoyancy pressure causes a greater penetration of the pore throats, to the extent that 
oil globules begin to form continuous filaments throughout the pore network. The 
continuity of the oil phase allows it to flow together with the water. At still shallower 
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depths, the oil cut becomes greater until the produced fluid becomes water-cut oil. 
Finally, a depth is reached where only oil is produced. The remaining water in the res-
ervoir is immobile and is found only as thin films on micropore surfaces.

The fluid production performance of this reservoir profile is an expression of 
the relative permeabilities of the reservoir rock with respect to oil and water as a 
function of fluid saturations. Simple concepts of permeability consider the situation 
where the pores of a reservoir rock contain a single fluid, typically water; then the 
permeability measured is the “absolute permeability,” K. If the pores contain two (or 
more) phases, the ability of a fluid to flow is not only controlled by the pore network, 
but also by the distribution of the other phases within the pores. For an oil/water 
system, two relative permeabilities can be defined, symbolized as Kro and Krw. Their 
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values are determined by the ratio of the permeabilities of each phase to the abso-
lute permeability. Between the FWL and the base of the transition zone, the isolated 
globules of oil are not produced and the relative permeability to oil, Kro. is essen-
tially zero. Above the base of the transition zone, Kro increases progressively; its value 
asymptotically approaches the absolute permeability as the water phase becomes im-
mobile and confined to smaller and smaller pores.

This description is a highly idealized portrayal of a reservoir composed of a single 
pore system with a constant porosity and distribution of pore-throat sizes. In reality, 
there may be lateral changes in facies within a reservoir unit across a field, as well 
as rapid vertical changes resulting from the interbedding of different lithologies. If 
there is a lateral gradient from larger to smaller pore-throat sizes, then the oil-water 
contact will actually rise in the field, producing an apparent tilted contact, because 
the transition zone has been lengthened. This is shown in Figure 7.2, taken from 
Arps (1964), together with the saturation profiles that would be expected for three 
wells in the hypothetical structural trap. This behavior is seen in many fields, where 
sometimes puzzling shifts in oil-water contacts merely reflect lateral facies changes 
in the reservoir rock. So, for example, Cuddy et al. (1993) advocated the use of the 
FWL, rather than the gas-water contact (GWC), as a consistent datum in gas fields 
in the North Sea, precisely because the GWC shows vertical shifts that reflect rock 
qualities. In addition, lengthy transition zones have meant that “many equity deter-
minations have foundered over arguments” concerning an appropriate water satur-
ation criterion to determine the GWC.

In the vertical dimension, there is an overall trend of water saturation decreasing 
upward, but the trend may be broken by excursions to lower or higher saturations 

WELL 1

WATER FREE OIL
PRODUCTION
ABOVE THIS

CONTACT

FREE WATER SURFACE

WELL 2

SP RES SP RES
1.0

0
0 100

Kro

Kr
w

Sw%

Rt

H
EI

G
H

T

H
EI

G
H

T

H
EI

G
H

T

Rt

Rt

Pc

Pc

Pc

1.0

0
0 100

Kro

Kr
w

Sw%

0 100Sw%Ro Ro Ro
0 100Sw% 0 100Sw%

WELL 3

SP RES
1.0

0
0 100

Kro

Kr
w

Sw%

Figure 7.2:  Changes in water–free oil contact controlled by reservoir rock quality. From Arps 
(1964), © 1964 American Association of Petroleum Geologists (AAPG), reprinted by permis-
sion of the AAPG, whose permission is required for further use.
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that reflect changes in permeability and pore-throat sizes. The exact pattern will be 
determined by the structure of the reservoir, whether it is relatively homogeneous or 
whether it consists of layers of rock with distinctly different pore-size distributions. 
The interrelationships between water saturation, r35 pore-throat size, and height 
above the free-water level are shown diagrammatically in Figure 7.3 (Hartmann and 
MacMillan, 1992). The closed system of the triangle means that any one of these 
variables can be solved if the values of the other two variables are known. The nu-
merical solution will vary according to the relationship between the buoyancy pres-
sure controlled by the hydrocarbon density and the height above free-water level. 
Also, measures of permeability can be substituted for the r35 pore-radius variable 
because of its strong relationship with the principal pore-throat size.

The interrelationships can also be seen on Figure 7.4, where a hypothetical reser-
voir consisting of two petrofacies that differ in their permeabilities is shown in terms 
of depth and pressure. If two of the three variables (height above the free-water 
level, permeability, and water saturation) are known, then the remaining variable is 
determined. The system provides a model for the reconciliation of saturations cal-
culated from logs with those predicted from capillary pressure measurements and a 
determination of the depth to the free-water level.

SATURATION-HEIGHT MODELING IN SANDSTONES FROM 
CAPILLARY PRESSURE MEASUREMENTS

An application of capillary measurements to free-water level estimation was 
described by Bhattacharya et al. (2008) for the Atokan sandstone reservoir in the 
Norcan East field of Kansas. Methods for predicting permeability from porosity and 
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gamma-ray logs of this unit were described in Chapter 3, and capillary pressure and 
pore-throat characterizations of representative cores were discussed in Chapter 6. 
Bhattacharya et al. (2008) modeled capillary pressure curves for various reference 
permeabilities to produce a generalized match to capillary pressure data from Ato-
kan sandstone cores (Figure 7.5). The laboratory measurements of the mercury-air 
system were first converted to an oil-brine system representative of the Norcan East 
field through the equation:

P
P

cR
cL R

L

=
( )

( )
σ θ

σ θ
cos

cos

where PcR and PcL are capillary pressures in the oil-brine reservoir and mercury-air 
systems, and σcosθ is the product of the interfacial tension and the cosine of the 
contact angle in each system. As shown on Figure 7.5, the oil-water capillary pres-
sure scale was also converted into an equivalent scale of height (H) above free-water 
level, using density measurements of oil (ρo = 0.704 gm/cc) and water (ρw = 1.08 gm/
cc) in this field:
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where g is the acceleration due to gravity.
Using this equation, multiple predictions of the depth of the free-water level 

can be made using estimates of permeability and water saturation from log mea-
surements. Each prediction is referenced to a sandstone zone, based on its subsea 
depth, water saturation calculated from the Archie equation, and permeability 
estimated by the regression analysis based on porosity and gamma-ray logs. The 
predictions are summarized as a frequency plot and cumulative frequency plot 
(Figure 7.6) to determine a best estimate of the free-water level. Bhattacharya et al. 
(2008) concluded that the FWL was probably located between 2,730 and 2,760 feet 
subsea; the spread in depths is attributable to insensitivities in the water satur-
ation values, statistical error in permeability estimates, and scaling issues. A major 
problem is the lack of data from the transition zone; such data would provide more 
reliable projections than those from water-free zones with immobile water satura-
tions. Perforations with no associated water production occur as deep as 2,753 
feet subsea, which limits the range of the FWL to depths between 2,754 and 2,760 
feet subsea. In further work, multiple predictions of water saturations based on 
the capillary pressure model for different values of the FWL within this range were 
compared to water saturations calculated from porosity and resistivity logs. The 
best fit was found when the free-water level was set at 2,758 feet subsea (Figure 
7.7). As a consequence of this validation of the model, the free-water level, water 
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Figure  7.5: Generalized capillary pressure curves for Atokan Sandstone reservoir perme-
abilities in the Norcan East field, Kansas. From Bhattacharya et al. (2008), © 2008 American 
Association of Petroleum Geologists (AAPG), reprinted by permission of the AAPG, whose per-
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saturation distribution, and permeability characterization captured the reservoir 
parameters for the entire field. When used for reservoir simulation, there was a 
successful match with the field performance history, both in terms of primary and 
secondary production.
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HEIGHT FUNCTIONS FOR BULK-VOLUME WATER

There are many situations where capillary pressure measurements from core data 
do not exist and even conventional core measurements of porosity and perme-
ability are not available. In these circumstances, the only recourse is to work with 
log measurements of porosity and calculations of water saturations to establish 
saturation-height functions. The oldest and simplest relationship is the “power func-
tion” which takes the form:

S aHw
b=

Water saturations (Sw) are fitted to height above free-water level (H) for discrete 
ranges of porosity, using regression analysis to estimate the parameters a and b 
(Skelt and Harrison, 1995). The “lambda function” is a power function variant with 
an added constraint that it is asymptotic to the “irreducible” water saturation.

Even if successful, the application of these functions introduces artificial discon-
tinuities at the boundaries of each porosity class. At a more fundamental level it is 
recognized that pore-throat sizes control the saturation function through perme-
ability rather than porosity, which simply measures pore volume. Porosity is used for 
pragmatic reasons because, unlike permeability, porosity is a log measurement. If 
there is a useable relationship between porosity and permeability, then porosity can 
be used as a proxy for permeability. In this case, saturation-height functions should 
incorporate petrofacies classes in their development.

Cuddy et  al. (1993) recognized the intrinsic problem of porosity bundling and 
proposed that saturation-height modeling should be cast in terms of bulk-volume 
water (BVW) using the function:

BVW aHb=

With a logarithmic transformation, this function becomes:

log log logBVW a b H= + ⋅

The constants a and b can be determined by least-squares regression, with BVW as 
the dependent (predicted) variable. A single function that successfully fits the log 
data can project an estimate of the free-water level and predict water saturation at 
any height, given porosity values from a log. Cuddy et al. (1993) pointed out that the 
function was not merely a useful empirical formula for saturation-height modeling 
but was a mathematical consequence of the Leverett J-function (Leverett, 1941):

J S
P k

w
c( ) =

σ θ φcos

where J is a dimensionless function of water saturation (Sw), Pc is capillary pressure, 
σcosθ is the product of the interfacial tension and the cosine of the contact angle, 
and k and φ are, respectively, the permeability and porosity. When the J-function 
was first proposed, it was considered a universal method to average a set of capillary 
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curves into a single coherent, dimensionless function. However, subsequent work 
has demonstrated that J-function averaging “only applies [emphasis in original] if the 
porous rock types have similar pore-size distributions or pore geometry” (Harrison 
and Jing, 2001). This inherent constraint must be borne in mind when evaluating 
the success of a BVW-height function. The success depends on the degree to which 
the fitted reservoir zones are drawn from a common petrofacies.

Kay and Cuddy (2002) applied this function to locating free-water levels within 
separate blocks of the Heather field and modeling fluid saturation–height functions. 
The Heather oil field is located in the northern North Sea, where oil is produced from 
sandstones of the Middle Jurassic Brent group. As one example, the BVW-height 
function and FWL were estimated in the North Terrace satellite field using data from 
two wells (Figure 7.8). In order to establish the position of the FWL, BVW data were 
first plotted against the true vertical depth below sea level (TVDSS). A porosity cut-
off of 10 percent was applied to exclude data that were not pay, particularly because 
many of these intervals were almost completely water saturated. The FWL is located 
where the plotted data project to an asymptotic value on the depth axis. The com-
putational procedure used to solve for the free-water level is iterative; a range of po-
tential depth values for the FWL are successively evaluated by fitting the BVW values 
to each potential datum. The best choice for the FWL is then selected as the level 
that produces the minimum summed least-square difference between the measured 
and estimated BVW values. In the North Terrace of the Heather field, the FWL was 
estimated to be approximately 10,730 feet below sea-level and closely matches the 
structural spill point. If the free-water level elevation is known, the water saturation 
can be calculated using the BVW-height function. In the Heather field, there is a gen-
erally good agreement between the water saturation computed from resistivity logs 
and that predicted by the BVW function.
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Figure 7.8:  Bulk-volume water (BVW) versus true vertical depth (TVD) feet subsea in two wells 
in the North Sea Heather field fitted with a BVW-height function to estimate the free-water 
level (FWL). Adapted from Kay and Cuddy ( 2002), courtesy the Geological Society of London.
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The BVW-height function can be justified mathematically, because it can be 
derived from the Leverett model, and also empirically, because it can provide viable 
predictions of water saturation. In addition, the function can be justified because it 
conforms to physical principles. When written in logarithmic form, the BVW-height 
function is:

log log logBVW a b H= + ⋅

Because capillary pressure is a linear function of height, it follows that a log-log 
crossplot of BVW and capillary pressure should be linear in form. Gagnon et  al. 
(2008) provided a useful illustration of this in their study of North Sea fields. Two 
crossplots of capillary pressure versus BVW for representative core plugs from six 
North Sea clastic reservoirs (Figure 7.9) show strong linear trends that appear to 
confirm a relationship between BVW and capillary pressure. Because each trend is 
from a single plug, the relationship is supported at the petrofacies level but lacks 
descriptive power in reservoirs that are composed of a range of petrofacies. This be-
havior is similar to that of the Leverett J-function to which the BVW-height function 
is linked. Notice how the trends in the BVW–capillary pressure crossplot in the left 
diagram of Figure 7.9 appear to reflect relative grain sizes (and pore sizes), so that 
the lowest BVW occurs within the Jurassic conglomerate. However, plugs taken as 
representative of two reservoirs interpreted as Jurassic marine sandstones (Figure 
7.9, right) are markedly different, implying that “Reservoir A” has larger pores than 
“Reservoir B.” The trend in the BVW–capillary pressure crossplot for the “Reservoir 
A” marine sandstone is virtually indistinguishable from the trends for the Perm-
ian eolian sandstone and the Triassic distal delta sandstone reservoirs. This further 
demonstrates that generalizations based only on depositional environments have 
little value unless they are linked to a specific grain-size distribution and, therefore, 
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six North Sea reservoirs, plotted and referenced to depositional environments (left) and within 
a depositional environment, but from two different reservoirs (right). Adapted from Gagnon 
et al. (2008), courtesy Society of Petrophysicists and Well Log Analysts.
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to petrofacies. Of course, any diagenetic cementation or dissolution will introduce 
yet another variable to be considered.

Gagnon et al. (2008) computed representative BVW-height functions based on 
log analyses for eleven North Sea clastic reservoirs deposited in a wide range of envi-
ronments (eolian, fluvial, lacustrine, deltaic, and turbidite) and ages (Devonian to 
Paleocene). Their results are shown in Figure 7.10, both on linear (left) and loga-
rithmic (right) scales of BVW and height. The log-log plot clearly demonstrates the 
relative role of parameter a, which expresses the intercept, and parameter b, which 
controls the slope. Gagnon et al. (2008) pointed out that the rock quality and reser-
voir fluid parameters of the Leverett J-function are all associated with the a term, 
and that the b term is a dimensionless scaling factor with little variability between 
fields. Consequently, the a term can be considered a fundamental measure of rock 
quality. The trends are consistent with earlier observations that lower BVW values 
are anticipated for reservoir units having larger pore throats and occurring at greater 
heights above the free-water level, where the water fraction is immobile.

Although Gagnon et  al. (2008) confirmed earlier conclusions by Cuddy et  al. 
(1993) in reporting that “BVW is largely independent of porosity and permeability 
for the typical porosity range” of the North Sea fields in their study, Harrison and 
Jing (2001) had a more nuanced view of this claim. They concluded that by ignoring 
variations in rock type, the method of fitting a height function to BVW values was 
biased toward the fit to water saturation in better quality reservoir rock. This often 
resulted in poor predictions in intervals having lower porosities and broke down in 
the transition zone. However, Harrison and Jing conceded that the procedure was 
the simplest height-saturation method available and that Cuddy et al. (1993) held 
an opposing view—that the BVW method was rooted in physics in contrast to other 
methods they regarded as arbitrary data-fitting techniques.

The performance of the BVW-height method compared to capillary pressure mod-
eling is explored by returning to the Atokan sandstones of the Norcan East field. 
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A composite depth plot of BVWs from twenty wells in the Norcan East field is shown 
in Figure 7.11. The sandstone zones are subdivided between those with gamma-ray 
log values of less than thirty API units and those with values between thrity and 
forty API units. This discriminates between two petrofacies of better and poorer res-
ervoir rock quality. An iterative procedure was used to establish the free-water level 
by successively changing the potential FWL values in the range of 2,752 to 2,765 feet 
depth subsea and fitting a regression model of the form:

log log logBVW a b H= + ⋅

The highest R-squared was associated with a free-water level at 2,768 feet depth 
subsea; the fitted function is shown in Figure 7.11.

If the regression model had a better statistical fit to the observations, then the 
function could be used with some confidence to predict water saturations at any 
height above the FWL. The water saturation at a specific depth is estimated by 
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dividing the BVW by the porosity log reading at the same depth. However, not only 
are there large deviations about the fitted trend, but there also is a significant bias 
caused by overestimation of the BVW in better-quality reservoir rock and underesti-
mation of the BVW in poorer-quality zones. This bias results from zones with lower 
permeabilities having higher BVW values than zones with higher permeabilities, at 
any given height above the free-water level. As a consequence, the BVW-height func-
tion predicts increased water saturations in units with higher permeability and lower 
water saturations in low-permeability zones.

The BVW-height function was reevaluated using only data from zones with 
gamma-ray values less than thrity API units; these zones would be considered the 
best candidates for pay intervals. An iterative search for a solution with the best 
fit resulted in a revised estimate of the free-water level at 2,756.5 feet subsea. This 
depth is very close to the final estimate of 2,758 feet, which was found by Bhat-
tacharya et al. (2008) in the reconciliation of their saturation model with capillary 
pressure data. The revised BVW-height function provides better estimates of water 
saturations, but only in sandstone intervals with gamma-ray values of less than 
thirty API units. A bias towards lower water saturations would result if the revised 
function were to be applied to sandstone zones with higher gamma-ray values.

The conclusions from this case study confirm that the BVW-height function may 
be applicable to a single petrofacies identified as pay, giving a viable method for pre-
dicting water saturation in pay zones. Unfortunately, this precludes water saturation 
estimation in other petrofacies when a complete characterization of saturation is 
needed for a comprehensive reservoir model. The better the fit of the BVW-height 
function in the pay petrofacies, the greater the confidence that can be placed on the 
estimate of the free-water level. All these conclusions are consistent with the notion 
that the BVW-height model is derived from the Leverett J-function. If the J-function 
fails to average separable petrofacies, the BVW-height function will also fail. How-
ever, with this caveat in mind, BVW-height analyses can provide some useful pre-
dictive outcomes, particularly considering that its modest data requirements can be 
met using logs alone.

PERMEABILITY-HEIGHT FUNCTIONS

To model all sandstones within a reservoir consisting of multiple petrofacies in a 
single comprehensive model, a saturation-height function should be keyed to both 
permeability (k) and capillary pressure (Pc) as the fundamental physical controls. In 
its simplest implementation, the predictive relationship takes the form:

S c Pc kw
d e= ⋅ ⋅

This equation was successfully applied by Mitchell et  al. (1999) to North Sea 
field data. Slightly more complex variants of this equation were used by Johnson 
(1987) and Søndenå (1992), although Mitchell et  al. (1999) claimed that their 
simpler form outperformed these alternatives and was less tedious to use. The 
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linear relation between height above FWL (h) and capillary pressure allows the 
simple substitution:

S c h kw
d e= ⋅

When solved as a linear regression, the model becomes:

log( ) log( ) log( ) log( )S c d h e kw = + ⋅ + ⋅

As an example, a water saturation-height function was developed for the Atokan 
sandstones in the Norcan East field. Water saturations computed from logs were 
regressed against height above the FWL, and the permeability was estimated from 
porosity and gamma-ray logs. The free-water level depth was set to the value produc-
ing the highest R-squared in the associated regression analysis. It should be noted 
that the logarithmic scaling of water saturation gives higher weightings to the lower 
water-saturation values. In order to avoid this bias, the regression was applied to 
arithmetic-scale water saturations; a crossplot of the model predictions versus values 
calculated from logs is shown in Figure 7.12. The regression model resulted in minor 
changes of the predicted values and moved the estimate of the FWL from 2,765 to 
2,761 feet depth subsea. The use of regression analysis to estimate reservoir param-
eters should be considered in terms of the implicit assumptions in regression and the 
degree to which these assumptions might conflict with the aims of the reservoir evalu-
ation. It is assumed that the deviations of the dependent variable from the fitted re-
gression model are normally distributed and that the means and dispersions of these 
deviations do not change for different values of the predictor variables. However, water 
saturation is a proportional measure with finite bounds, and its distribution varies 
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according to the ratio of the length of the reservoir to the length of the transition 
zone. If the reservoir section is long compared to the transition zone, then most water 
saturations take on their “irreducible” values (Swi) and the values are distributed be-
tween the component petrofacies modified by a gradual drift downwards at increas-
ing heights above the free-water level. If the transition zone is lengthy, then the wide 
range of water saturations results in a distribution with a strong positive skew.

The potential problems associated with parametric statistical analysis can be 
addressed by a variety of different approaches, but more fundamental issues should 
be considered. What is the purpose of the analysis? Is it to predict water saturations 
with equal errors, regardless of whether the saturations are high or low? If this re-
quirement is made to satisfy the demands of a simulation model, then what are the 
consequences for volumetrics? If saturations are honored equally, regardless of their 
associated porosities, then small volumes of water are matched to the same degree 
as large volumes of water. Perhaps a better saturation-height model would rely on 
the fraction of the rock that is water-filled (BVW) rather than the fraction of the pore 
space (Sw). At the largest scale, if a major goal of the analysis is to assess the total 
hydrocarbons in place, then perhaps saturation height should be analyzed in terms 
of bulk-volume hydrocarbon (BVH), where:

BVH Sw= ⋅ −Φ ( )1

If BVH is chosen as the critical variable, then water saturation values used for simu-
lation should be derived from BVH in order to maintain a consistent and coherent 
model with no internal conflicts. Both Heseldin (1974) and Alger et al. (1989) chose 
BVH-height models, primarily because the choice of BVH resulted in more robust 
averaging of capillary pressure data and a way to integrate log and core data that was 
more amenable to regression analysis. Finally, the criterion of “fit-for-purpose” is 
widely used in the petroleum industry to evaluate competing methods, based on their 
ability to produce robust estimates within an acceptable range defined by economics. 
In selecting an appropriate saturation-height model, the purpose of the reservoir 
characterization should be clearly defined, particularly if there are multiple objectives.

The Leverett J-function (Leverett, 1941) continues to be widely used as an initial 
procedure for averaging capillary pressure curves. It also is applied in a more adap-
tive fashion by assigning different functions to petrofacies that are distinguished 
by their porosity-permeability relationships. This is explicitly recognized when the 
“rock quality index” (RQI) equation is applied:

RQI
k= ⋅0 0314.
Φ

because it is derived from the J-function. For example, Obeida et al. (2005) applied 
RQI values to develop separate J-functions associated with seventeen reservoir rock 
types identified from the core, logs, and seismic data. These were used to model sat-
urations within a giant Lower Cretaceous carbonate reservoir in the Middle East. 
This study, in common with all saturation-height models that are built from multiple 
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petrofacies, requires that the reservoir architecture be described by the spatial stack-
ing of the petrofacies elements. These can be identified in cored wells, but they must 
be predicted from logs calibrated to the core in uncored wells.

As an alternative to the iterative fitting of models to reservoir measurements, 
forward modeling can be used to create hypothetical reservoir architectures. 
Predicted log responses of the models are matched against the observed log 
measurements in an iterative manner that reconciles log responses with reser-
voir properties. One immediate benefit is that the architecture of the reservoir 
can be expressed in terms of the spatial arrangement of flow units. The effects 
of long-term trends in the grain-size/pore-size ratio can be evaluated, as can 
short-term cycles, such as those in stacked clastic sequences. At the most basic 
level, simple forward models can be used to evaluate the consequences of dif-
ferent styles of reservoirs and the methodologies used for their analysis. So, for 
example, Doveton (2008) described a simple forward-model procedure (Figure 
7.13) where a sequence of flow units was generated by a petrofacies transition 
probability matrix. Although stationary, the Markov-chain realization could be 
modified to incorporate long-term trends. Representative porosities and perme-
abilities are assigned to each level, and the water saturation is predicted based on 
the petrofacies and height above the free-water level. Finally, resistivity and por-
osity logs are modeled for the simulated section and displayed as a Pickett plot for 
comparison with real sections. More sophisticated forward-modeling procedures 
can be developed to match real reservoirs. The use of petrofacies results in a hier-
archy of simulated reservoirs in which distinctive flow units are preserved; it is 
thus more likely that there will be a match with the performance of a real reser-
voir (Maharaja and Journel, 2005).

SATURATION-HEIGHT MODELING IN CARBONATES

As described in Chapter 3, Lucia (1995) subdivided limestones and dolomites into 
three petrophysical classes based on porosity and permeability descriptors linked to 
textures observed in the core. The first two classes are grain-dominated fabrics rang-
ing from grainstones to packstones, while the third class consists of mud-dominated 
packstones, wackestones, and mudstones. Using capillary pressure data, Lucia 
(1995) also developed an equation for each fabric class that relates the hydrocarbon 
column height to porosity and saturation:

S a Hw
b c= ⋅ Φ

The coefficients a, b, and c for each of the three classes are:

Class 1: a = 0.02219, b = −0.316, c = −1.745
Class 2: a = 0.1404, b    = −0.407, c = −1.440
Class 3: a = 0.6110, b   = −0.505, c = −1.210
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These equations can be applied to standard log-analysis computations of porosity 
and water saturation to model the structure of nonvuggy carbonate reservoirs. An 
example is shown in Figure 7.14, where anticipated saturation profiles are shown 
for the three classes in an interval of the San Andres formation in the Seminole field 
of the Permian basin of Texas (Lucia, 2007). In the upper, cored section, there is an 
excellent match between the water saturation calculated from logs and the class sat-
uration curve based on the core fabric. If fabric classes can be predicted from logs 
in uncored sections, then a composite saturation profile can be created that honors 
both the height above the free-water level and the reservoir architecture.
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The Lucia model expresses carbonate architecture in terms of framework descrip-
tors that commonly are used by geologists and are applicable to most carbonate res-
ervoirs. However, even though the classes are associated with distinctive segments 
of the porosity-permeability continuum, they are based on depositional lithofacies. 
They can serve only as first-order descriptors of carbonate microarchitecture, which 
may exhibit complex variability in pore-body and pore-throat size distributions. 
Saturation-height analyses of carbonates are much more problematic than analyses 
of clastics, because carbonate pore systems may be multimodal rather than the uni-
modal distributions of intergranular porosity. If a pore-throat system is multimodal, 
then the J-function and related methods will not be adequate predictors because 
they are tied to an average permeability-porosity ratio.

The Thomeer method has been widely applied to capture the multimodality of 
carbonate pore systems by superposing multiple hyperbolas, each corresponding to 
a distinctive modal size of pore throat. Advocates of the method point out that the 
J-function approach is not “rock-texturally intuitive” (Clerke et al., 2008), in con-
trast to the fitting of Thomeer hyperbolas, which are explicitly linked to observed 
pore-throat sizes. The Thomeer model (Thomeer, 1960) is expressed as a hyperbola 
when data are plotted as the logarithm of capillary pressure versus the logarithm of 
the bulk volume of the nonwetting phase (mercury in the laboratory). The Thomeer 
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hyperbola is controlled by three parameters that have a simple geometrical inter-
pretation, as shown in Figure 7.15. The parameter Pd is the horizontal asymptote 
and represents the extrapolated entry (or displacement pressure); Vb∞ is the vertical 
asymptote and represents the bulk volume of mercury extrapolated to infinite pres-
sure; c is a hyberbolic constant that controls the shape of the curve. Expressed as an 
equation, the Thomeer hyperbola is:

log log
V
V

P
P

cb

b

c

d∞







⋅






=

Vb is the fractional volume occupied by mercury, and Pc is the capillary pressure. The 
hyperbolic constant, c, is usually recast as G, the “pore geometric factor” by the equa-
tion:

G
C
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This modification dates from the precomputer methodology of Thomeer (1960) and 
was designed “. . . to simplify this equation and available mathematical tabulations.” 
In either guise (c or G), the shape parameter reflects the width of the distribution of 
pore-throat sizes as an expression of sorting. The parameter Pd is controlled by the 
largest pore throat and Vb∞ corresponds to the total porosity volume.
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If a single Thomeer hyperbola provides a good fit to the data, then the bulk volume 
of mercury at infinite pressure should be approximately equal to the porosity of the 
sample. If this is not the case, then the modeler may choose to apply two hyperbolas 
for an improved fit; this decision may be obvious if there is a kink in the capillary 
pressure curve. In a double hyperbola model, there are two sets of Thomeer param-
eters, whose entry-pressure parameters represent two distinctive modal pore-throat 
sizes (Figure 7.16).

Clerke and Martin (2004) developed a shareware spreadsheet to interactively 
fit multiple hyperbolas. Clerke et al. (2008) applied the procedure to 125 samples 
representing a variety of Dunham textures taken from the Upper Jurassic Arab D 
limestone in the Ghawar field of Saudi Arabia. The first step of the analysis was to 
determine the pore-system modality of each sample, because this establishes the 
number of Thomeer hyperbolas that are required to fit the capillary pressure data. 
The authors found that 35 percent of the samples were unimodal, 62 percent were 
bimodal, and 3  percent were trimodal. When differentiated by the Dunham tex-
tural classes (Figure 7.17), the modalities follow a distinctive trend that matches 
the patterns observed in the pore-throat size and pore-body size distributions that 
were described in Chapter 6. The identification of a microporous mode in the Arab 
D is important, because this mode does not significantly contribute to permeability. 
The analysis demonstrates that entry pressure is the most important Thomeer par-
ameter. Because the entry pressure is strongly correlated with permeability, this 
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parameters, where the entry pressure parameters are linked with two distinctive modal 
pore-throat sizes.
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confirms that the Lucia petrophysical classification is a viable first-order model for 
saturation-height modeling.

A second consequence of modeling multimodal porosity by Thomeer analysis 
is the isolation of distinctive modes, which Clerke et  al. (2008) characterized as 
“porositons.” Four principal porositons were identified, with mean pore-throat diam-
eters of 58.27, 1.05, 0.16, and 0.04 microns. Mutimodal systems were then defined 
in terms of porositon combinations; these are expressed as distinctive clusters on 
permeability-porosity crossplots and as associations with textural facies. Clerke 
et al. (2008) also examined the relationship between T2-relaxation-time spectra and 
pore-throat size distributions in core samples to see if multimodality in pore throats 
matched the equivalent multimodality of inferred pore-body sizes. Results from 
both core (Figure 7.18) and magnetic resonance logging were encouraging; this sug-
gests a possible link between “porobodons” and “porositons” that could be exploited. 
This would be valuable because of the greater availability and sampling volume of 
magnetic resonance logs compared to core plugs.

SATURATION-HEIGHT MODELING BASED ON MAGNETIC 
RESONANCE LOGS

The role of magnetic resonance logging in permeability estimation has been discussed 
in Chapter 3. In this section, we turn our attention to their potential to develop ca-
pillary pressure curves and saturation-height models. The fluid saturation profile is 

60k

10k

M
er

cu
ry

/A
ir

 c
ap

ill
ar

y 
pr

es
su

re
, p

si
1k

100

10

1
100 10

Bulk volume occupied by mercury %

1 0.1 Frequency

Pd histogram

Figure  7.17:  Ghawar field Arab D limestone capillary pressure curves fitted with multiple 
Thomeer hyperbolas. Graph on right plots frequency against Thomeer entry pressures. One of 
the double Thomeer hyperbolas is marked in bold. Adapted from Clerke (2009), Used with per-
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determined by the entry of hydrocarbons through successively smaller pore throats, 
and the magnetic resonance log records a spectrum of relaxation times that reflects 
the distribution of pore-body sizes. The fundamental challenge is to find a relation-
ship between pore-body and pore-throat sizes that can be used to convert the T2 re-
laxation time to capillary pressure. This relationship exists in sandstones (and some 
carbonates) because the grain size determines both the pore- and pore-throat sizes to 
some degree (Volokitin et al., 2001). If the ratio of pore-throat radius (rt) to pore-body 
radius (rb) is a constant (A), then the procedure ideally is a simple rescaling:

r A rt b= ⋅

However, the pore-body dimension measured by the T2-relaxation-time distribu-
tion is a function of the ratio of the internal surface area (S) to the volume (V), so 
the estimated “radius” varies with pore shape, as discussed in Chapter 6. If the bulk  
relaxation and diffusion effects are neglected:
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Figure 7.18:  Comparison of NMR T2 relaxation time and pore-throat diameter measurements 
from an Arab D limestone core plug at 100 percent water saturation. Adapted from Clerke et al. 
(2008), courtesy GeoArabia.
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where ρ is the surface relaxivity and G is the geometric shape factor. The relationship 
between pore-throat radius and capillary pressure is given by the Washburn equa-
tion:

P
rc
t

= 2σ θcos

These three equations can be combined to transform the T2 relaxation time into ca-
pillary pressure:

1
2

2
P

A G T
c

= ⋅ ⋅ ⋅ρ
θcos

This can be simplified:

P C Tc = ⋅ −2 1

Volokitin et al. (2001) calculated C in an extensive study of 380 sandstone core plugs 
to determine an “optimal conversion constant,” which they termed kappa (κ). This 
could be used to transform magnetic resonance logs to equivalent capillary pres-
sure curves. This methodology would be important, if successful, because logs pro-
vide continuous records of greater rock volumes compared to limited, discrete, and 
destructive core-plug measurements. Volokitin et al. (2001) compared saturations 
from uniformly sampled capillary pressure curves to saturations predicted from T2 
distributions by a root-mean-square evaluation of the differences between measure-
ments and predictions. They concluded that below 500 psi, the optimal value for 
kappa in sandstones was three, when the T2 relaxation time was scaled in seconds 
and the mercury/air capillary pressure was measured in psi units. This prediction 
model is appropriate for zones that are completely water-saturated. Volokitin et al. 
(2001) described a method to adjust the T2-relaxation-time spectra of partially satu-
rated zones to the distributions expected at complete saturation by evaluating the 
“irreducible” water saturation and rescaling the free-fluid distribution.

Volokitin et al. (2001) cautioned that allowance must be made for variability in 
relaxivity in different sandstone formations when applying this simple relationship 
and default value to magnetic resonance logs. They also noted that incorporating 
a variable scaling parameter provides an improved fit, particularly for finer pores, 
where a more realistic fit to “irreducible” saturations can be made. Altunbay et al. 
(2001) extended the methodology by considering the variability of the factor, C. 
There are three components of the equation that define C:

C
r
r

Gt

b

= ⋅ ⋅
ρ

θ2cos

The first term combines the relaxivity of the pore surface with the surface-tension 
properties of the wetting fluid, and can be considered a constant for each rock 
sample. However, the two terms of the ratio of pore-throat radius to pore-body 
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radius and the geometric shape factor are subject to variation. Because C can be 
calculated by matching a T2 relaxation time with its corresponding capillary pres-
sure at an equivalent water saturation, the conversion factor can be evaluated as 
a function of pore size. So, the recommendation of Volokitin et al. (2001) to use a 
higher value of kappa for finer pores suggests either a change in the shapes of the 
pore bodies, a convergence in the sizes of the pore throats and pore bodies, or a 
combination of the two.

Extending this methodology to carbonates is, as usual, more complex for a variety 
of reasons. First, the surface relaxivity of carbonates is more variable than that of 
sandstones, so that formation variability must be taken into account. The distinc-
tion between pore bodies and pore throats and their representation by basic geo-
metric shapes can be incorporated into intergranular models. In contrast, the shapes 
of carbonate pores may be difficult to quantify, as they are irregular voids and the 
relationship between pore-body and pore-throat size is obscure. Multiple-porosity 
systems also are common in carbonates, requiring conceptual pore models that are 
more complex than those of simple intergranular networks.

The consequences of all these factors can be seen in the empirical results from 
scaling T2 relaxation times with capillary pressures in carbonate samples. Although 
the conversion factor, C, is unlikely to be a constant across all sizes of pores within 
a carbonate sample, its variability can be modeled either as a continuous function 
with respect to water saturation or as values associated with specific pore sizes. The 
work of Clerke et al. (2008) suggests that distinctive pore-throat sizes (“porositons”) 
occur in carbonates and these can be linked with corresponding sizes of pore bodies 
(“porobodons”). If this is true, the scaling factor may be a stepped function of char-
acteristic values for discrete pore sizes based on combinations of geometric shapes 
and ratios of the pore-throat to pore-body radii.

PUTTING IT ALL TOGETHER: THE STATIC RESERVOIR MODEL

In this chapter we have reviewed saturation-height models as a final step in char-
acterizing a reservoir. Earlier sections of this book discussed the analysis of prop-
erties that collectively describe the architectural components of the static model. 
Once the boundaries of a reservoir have been circumscribed by geophysical methods 
coupled with structural mapping, petrophysical properties estimated from well logs 
must be interpolated to populate a three-dimensional cellular model of the reser-
voir’s interior. This static model (sometimes referred to as the geological model or 
geomodel) is the precursor to a dynamic model where reservoir simulation and his-
tory matching reconcile the model to the reservoir’s production performance. An 
example of a static reservoir model is shown in Figure 7.19 (Dubois et al., 2012), 
with three-dimensional cellular renditions of facies, porosities, and water satura-
tions within the Chesterian incised valley sandstone reservoir of the Pleasant Prairie 
south field in Haskell County, Kansas. The field was discovered by three-dimensional 
seismic exploration in 1990 and has produced 4.4 million barrels of oil; it was put on 
waterflood in 2002. Petrophysical data for the model were drawn from logs run in 
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twenty-five wells. The cell dimensions of the model were set at fifty-five feet horizon-
tally and two feet vertically, resulting in 700,000 active cells.

The four key components of a static model are facies, porosity, permeability, and 
water saturation. Lithofacies recognized in the core can be integrated with petro-
physical logs for prediction of lithofacies in uncored wells, as described in Chapters 4 
and 5. The interpreted depositional environments associated with these lithofacies 
are the key to the development of a three-dimensional framework in which appro-
priate lateral interpolation functions are used to create geobodies with geologically 
realistic shapes and sizes. At the same time, the distinctions between petrofacies and 
lithofacies should be recognized, as discussed in Chapter 6, because a failure to iden-
tify and discriminate flow units will compromise history matching in the dynamic 
model. Methods to evaluate porosity were described in Chapter 2; the discrimination 
of effective porosity, in the engineering sense of a pore space containing movable 
fluids, is important in the static model. As described in Chapter 3, the realistic esti-
mation of permeability within a static model requires the subdivision of the model 
into petrofacies, each with distinctive porosity-permeability associations. Finally, 
Chapter 1 described the calculation of water saturation by the Archie equation and 
its variants: in this last chapter, the fluid saturations that populate the static model 
are reconciled with the forces of gravity that control buoyancy pressures and the ca-
pillary forces that constrain fluid entry and exit through the pore system.

Figure 7.19:  Static model of the incised valley Chesterian sandstone reservoir of the Pleasant 
Prairie South field, Haskell County, Kansas. From Dubois et al. (2012), courtesy Geophysical 
Society of Oklahoma City.
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So, in the final analysis, the static model is the fruition of petrophysics, as first 
realized by Archie as a concept, and now actualized as a computer construct. In the 
pages of this book we have seen the mix of empiricism and rival analytical models 
that are the lifeblood of everyday petrophysical practice. Those who constrain them-
selves to think of the Archie equation as “Archie’s law” will find it to be a chimera and 
should instead recognize it as a useful model that has been the basis for a variety of 
successful formation evaluation methods. However, there are indeed physical laws 
that govern petrophysics, and they control the movement and entrapment of fluids 
within rock pore spaces. As a popular bumper sticker proclaims:  “Gravity. It’s the 
Law.” The results of mathematical petrophysics must give results that are consistent 
with the physical world as we understand it. But rocks are complicated, so we can 
never fully characterize the subsurface with the limited data that are generally avail-
able. Useful models, rather than complete realizations, are the goal, and these should 
have sufficient power to deliver practical results. The implementation of mathemat-
ical petrophysics have evolved from charts, through calculators, to computer appli-
cations. Pattern recognition from a reservoir perspective and algebraic solutions of 
reservoir properties have been the common thread throughout. However, the future 
is upon us, now that not only static models are improving in scope and sophistica-
tion at the large scale, but “digital rocks” are starting to emerge as practical petro-
physical solutions at the microscopic scale.
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