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Repetition - notations, history, goals, misconceptions,
snags and reality
Outliers and leverage points
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Recalling notations we have fixed in the the first lecture.

3.43.63.844.24.44.6
3.5

4

4.5

5

5.5

6

6.5LUMINIOUS
OUTPUT REGRESSION MODEL

Yi = X ′i β
0 + ei

= Xi1β
0
1 + Xi2β

0
2 + ...+ Xipβ

0
p + ei ,

i = 1, 2, ...,n
Yi - RESPONSE VARIABLE (for i-th object, known)
Xi ∈ Rp - EXPLANATORY VARIABLES (for i-th object, known)
β0 - REGRESSION COEFFICIENTS (“true”, unknown)
ei - DISTURBANCES, ERROR TERM (for i-th object, unknown)

SURFICE TEMPERATURE

Galton, F. (1886): Regression towards mediocrity in hereditary stature.
Journal of the Anthropological Institute vol. 15,. 246–263.

THE TASK IS TO ESTIMATE UNKNOWN

REGRESSION COEFFICIENTS
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Enlarging a bit notations

3.43.63.844.24.44.6
3.5

4

4.5

5

5.5

6

6.5

LUMINIOUS
OUTPUT

Today we will need also matrix notations:

REGRESSION MODEL

Y = Xβ0 + e

Y ∈ Rn - RESPONSE VARIABLE AS A VECTOR
X ∈ Rn × Rp - DESIGN MATRIX

β0 - REGRESSION COEFFICIENTS
e ∈ Rn - DISTURBANCES, ERROR TERM AS VECTOR

SURFICE TEMPERATURE
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Recalling recommendable framework

We should use always the model with intercept, i. e. with desigh matrix

1, x1,2, . . ., x1,p
1, x2,2, . . ., x2,p

...
...

...
...

1, xn,2, . . ., xn,p


.

with one exception

- which one?

It force the estimator to do one important thing. Which one?

(We in fact impute an additional information into processing the data.)
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A drop of history

3.43.63.844.24.44.6
3.5

4

4.5

5

5.5

6

6.5

THE MOST FREQUENTLY USED METHODS

LUMINIOUS
OUTPUT

MAXIMUM LIKELIHOOD

β̂(ML,n) = ARG MAX
β∈Rp

∏n
i=1 f (Yi − X ′i β)

Laplace, P. S. (1774): Mémoire sur la probabilité
des causes par les évènemens.

Mémoires de l’Académie royale des sciences presentés
par divers savans 6, 621 – 656.

SURFICE TEMPERATURE
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A drop of history

3.43.63.844.24.44.6
3.5

4

4.5

5

5.5

6

6.5

THE MOST FREQUENTLY USED METHODS

LUMINIOUS
OUTPUT

THE METHOD OF THE LEAST SQUARES

β̂(LS,n) = ARG MIN
β∈Rp

∑n
i=1 (Yi − X ′i β)

2

Legendre, A. M. (1805): Nouvelles méthodes pour
la détermination des orbites des comètes.

Paris, Courcier.
Gauss, C. F. (1809): Theoria molus corporum celestium.

Hamburg, Perthes et Besser.

SURFICE TEMPERATURE
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A bit of theory

3.43.63.844.24.44.6
3.5

4

4.5

5

5.5

6

6.5

THE MOST FREQUENTLY USED METHODS

LUMINIOUS
OUTPUT

THE LEAST SQUARES

β̂(LS,n) = ARG MIN
β∈Rp

∑n
i=1 (Yi − X ′i β)

2

MAXIMUM LIKELIHOOD

β̂(ML,n) = ARG MAX
β∈Rp

∏n
i=1 f (Yi − X ′i β)

SURFICE TEMPERATURE

Equivalence of estimators

If the error terms are normally distributed,
the estimators coincide, i. e.

β̂(LS,n) = β̂(ML,n).
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Estimating by means of L1 metric

β̂(L1,n) = arg min
β∈Rp

n∑
i=1

|Yi − X ′i β|

(A hint on the next slide!!)
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Boscovisch, R. J. (1757): De litteraria expeditione per pontificiam
ditionem, et synopsis amplioris operis, ac habentur plura eius ex

exemplaria etiam sensorum impressa.
Bononiensi Scientiarum et Artium Instituto

Atque Academia Commentarii 4, 353-396.

Laplace, P. S. (1793): Sur quelques points du systeme du mode.
Memoires de l’Academic Royale des Sciences de Paris, 1-87.
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The solution can be found by the rule and pencil.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

6

All residuals are negative.
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Can You say what happens when we shift the line up or down?
The sum of absolute values of the green and the red residuals doesn’t change.
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The sum of absolute values of the green and the red residuals doesn’t change.
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The solution can be found by the rule and pencil.

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

So, how does the solution of L1-problem have to look like?

It has to have the same number of points above and under the line.

Simultaneously, it has to minimize the sum of residuals.
It should draw line through points - as much as possible.
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In the 5th lecture M-estimators for general parameter were considered.

We have considered a general parameter family:

Let {F (x , θ)}θ∈Θ and {f (x , θ)}θ∈Θ be families

of d. f.’s and densities, respectively.

Then we have put:

The solution of the extremal problem

θ̂(M,n) = arg min
θ∈Θ

n∑
i=1

ρ (xi , θ)

is called Maximum likelihood-like estimators of the parameter θ
or M-estimators of θ, for short.

(We are going to specify it for the regression framework
but prior to it let’s define outliers and leverage points.)
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Influential observations - outliers

We speak about outlier if:

There is an observation
which has values of the explanatory variables “inside” the “cloud of data”,

the value of the response variable is however
“far away” from the expected value of response variable.

From possible influential points this is less dangerous
- the figure on the next slide says much more.
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Influential observations - leverage point

We speak about good leverage point if:

There is an observation which has
values of the explanatory variables “far away” from the “cloud of data”,

the value of the response variable is however the expected one.

From possible influential points this has a positive influence
- the figure on the next slide says much more.
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Influential observations - leverage point

We speak about bad leverage point if:

There is an observation which has
values of the explanatory variables “(far) away” from the “cloud of data”

and the value of the response variable is also
“(far) away” from the expected value of response variable.

From possible influential points this is the most dangerous
- the figure on the next slide says much more.
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Basic diagnostic tool

Hat matrix
X (X ′X )
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and its diagonal - see the next several slides.
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Recognizing the influential points

All these influential points can be easily recognized
(for simplicity assume intercept in model).

To see it, let’s make some preliminary considerations. Realize that:

1 for any observation the vector of explanatory variables Xi specifies
its location in the space of explanatory variables, i. e. in Rp,

2 ‖Xi‖ =
√∑p

j=1 X 2
ij is the length of vector Xi ,

i. e. the distance of observation from the origin in Rp,

3 ‖Xi‖2 =
∑p

j=1 X 2
ij = X ′i IIXi where II is the (diagonal) unit matrix,
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Continuing in preliminary considerations
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Recognizing the influential points

All these influential points can be easily recognized
(for simplicity assume intercept in model).

To see it, let’s make some preliminary considerations. Realize that:

1 for any observation the vector of explanatory variables Xi specifies
its location in the space of explanatory variables, i. e. in Rp,

2 ‖Xi‖ =
√∑p

j=1 X 2
ij is the length of vector Xi ,

i. e. the distance of observation from the origin in Rp,

3 ‖Xi‖2 =
∑p

j=1 X 2
ij = X ′i IIXi where II is the (diagonal) unit matrix,

4 substitute II by (X ′X )
−1

and find what the value d2(Xi) = X ′i (X
′X )
−1 Xi represents.
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Continuing in preliminary considerations

What is d2(Xi) = X ′i (X
′X )
−1 Xi?

1 The first row (and the first column, of course) of X ′X is

nX
′
=

(
n,

n∑
i=1

Xi2,

n∑
i=1

Xi3, ...,

n∑
i=1

Xip

)
.
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Recalling the desigh matrix



1, x1,2, . . ., x1,p
1, x2,2, . . ., x2,p

...
...

...
...

1, xn,2, . . ., xn,p



and its transposition: 

1, 1, . . ., 1
x1,2, x2,2, . . ., xn,2

...
...

...
...

x1,p x2,p, . . ., xn,p


.
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Recalling the desigh matrix

Hence the first line of the matrix given by the product

1, 1, . . ., 1
x1,2, x2,2, . . ., xn,2

...
...

...
...

x1,p x2,p, . . ., xn,p


×



1, x1,2, . . ., x1,p
1, x2,2, . . ., x2,p

...
...

...
...

1, xn,2, . . ., xn,p



is
(
n,
∑n

i=1 Xi2,
∑n

i=1 Xi3, ...,
∑n

i=1 Xip
)
= nX

′
.
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Continuing in preliminary considerations

What is d2(Xi) = X ′i (X
′X )
−1 Xi?

1 The first row (and the first column, of course) of X ′X is

nX
′
=

(
n,

n∑
i=1

Xi2,

n∑
i=1

Xi3, ...,

n∑
i=1

Xip

)
,

2 from X ′X (X ′X )−1 = II it follows that
nX
′
(X ′X )

−1
= (1,0, ...,0), i. e. X

′
(X ′X )

−1
= (1/n,0, ...,0),

3
(
Xi − X

)′
(X ′X )

−1 (Xi − X
)

= X ′i (X
′X )
−1 Xi − X

′
(X ′X )

−1 Xi − X ′i (X
′X )
−1 X + X (X ′X )

−1 X

d2(Xi)− 1/n − 1/n + 1/n = d2(Xi)− 1/n .
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Continuing in preliminary considerations

We have found:

d2(Xi) =
(
Xi − X

)′
(X ′X )

−1 (Xi − X
)
+ 1/n,

i. e. except of 1/n, d2(Xi) is the squared distance
of given observation from the “center of gravity”

of the cloud of all observations.

Can we make an idea how large it is (typically)?
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Continuing in preliminary considerations

We easy verify that:

1 d2(Xi) = X ′i (X
′X )
−1 Xi =

[
X (X ′X )

−1 X ′
]

ii
,

2 for any matrices A and B
(which can be multiplied and result is square matrix)

trace (AB) = trace (BA) ,
(the proof is a computation),

3 applying it
trace

(
X (X ′X )

−1 X ′
)
= trace

(
X ′X (X ′X )

−1
)
= trace (II) = p,

4 the matrix X (X ′X )
−1 X ′ has n diagonal elements,

hence each of them is approximately p/n large.

A lot of information can be found in

Chatterjee, S., A. S. Hadi (1988):
Sensitivity Analysis in Linear Regression.

New York: J. Wiley & Sons.
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1 Linear regression
Repetition - notations, history, goals, misconceptions,
snags and reality
Outliers and leverage points
Estimating regression model by alternative methods

2 Feasible high breakdown point estimators
Deleting some observations
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M-estimators for the regression framework.

The solution of the extremal problem

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ (Yi − X ′i β)

is called
Maximum likelihood-like estimators of the regression coefficients

or M-estimators of β0, for short.

(We can use the same ρ as for location and scale.)
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M-estimators for the regression framework.

The solution of the extremal problem

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ (Yi − X ′i β)

is called
Maximum likelihood-like estimators of the regression coefficients

or M-estimators of β0, for short.

(We can use the same ρ as for location and scale.)
We usually adopt some basic assumptions:

Let F (x , r), x ∈ Rp, r ∈ R be a d.f. (with a density f (x , r)) governing the
explanatory variables and disturbances in the regression model.
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or M-estimators of β0, for short.

(We can use the same ρ as for location and scale.)

Evidently this form of definition inevitably implies that β̂(M,n) is not
scale- and regression-equivariant.

(possible solutions of the problem on the next but one slide).
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M-estimators for the regression framework.

The solution of the extremal problem

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ (Yi − X ′i β)

is called
Maximum likelihood-like estimators of the regression coefficients

or M-estimators of β0, for short.

(We can use the same ρ as for location and scale.)

An advantage - on the other hand -
an easy computation of a solution, see the next slide.
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Computing M-estimate of regression coefficients

Consider the extremal problem (with ρ(0) = 0)

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ (Yi − X ′i β) = arg min
β∈Rp

∑
{i:Yi−X ′i β 6=0}

ρ (Yi − X ′i β) .

Write it as

β̂(M,n) = arg min
β∈Rp

∑
{i:Yi−X ′i β 6=0}

ρ (Yi − X ′i β)(
Yi − X ′i β

)2 (Yi − X ′i β)
2

= arg min
β∈Rp

n∑
i=1

wi · (Yi − X ′i β)
2

where either wi = ρ (Yi − X ′i β) / (Yi − X ′i β)
2 if Yi − X ′i β 6= 0,

wi = 0 otherwise. Then

β̂(M,n) = (X ′WX )
−1 X ′WY

where W = diag(w1,w2, ...,wn).
And an iterative computation, starting with a preliminary “guess” of β0 .

Antoch, J., J. Á. Víšek (1991):
Robust estimation in linear models and its computational aspects.

Contributions to Statistics: Computational Aspects of Model Choice,
Springer Verlag, (1992), ed. J. Antoch, 39 - 104.
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GM-estimators for the regression framework.

The solution of the extremal problem

β̂(M,n) = arg min
β∈Rp,σ∈R+

n∑
i=1

ρ

(
Yi − X ′i β

σ

)
is called

General(ized) Maximum likelihood-like estimator
of the regression coefficients or GM-estimator of β0, for short.

(We can still use the same ρ as in previous.)
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GM-estimators for the regression framework.
That is why we usually select a preliminary consistent

(sufficiently robust) estimator of standard deviation
of disturbances, say σ̂(n) and put:.

The solution of the extremal problem

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′i β
σ̂(n)

)
is also called

Generalized Maximum likelihood-like estimator
of the regression coefficients or GM-estimator of β0, for short.

(We can still use the same ρ as in previous.)
This proposal is frequently used but even experienced statisticians

are not aware that it has a drawback - see the next slide.
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Repetition from the 3rd lecture

Equivariance of β̂(n)

β̂(Y ,X ) : M(n,p + 1)→ Rp

scale-equivariant : ∀c ∈ R+ β̂(cY ,X ) = cβ̂(Y ,X )

regression-equivariant : ∀b ∈ Rp β̂(Y + Xb,X ) = β̂(Y ,X ) + b

Examples : β̂(OLS,n) = (X ′X )
−1 X ′Y

β̂(L1,n) = ...
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We have justified the requirement of equivariance

What is the equivariance of β̂(n) good for ?

1 When the units of measurement have been changed,
we don’t need to recalculate the estimator

- we just shift the decimal point
(we are used to it from classical statistics).

2 The requirement of invariance and equivariance
removed superefficiency.
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Problems with studentization of residuals

Bickel, P. J. (1975): One-step Huber estimates in the linear model.
J. Amer. Statist. Assoc. 70, 428–433.

To reach scale- and regression-equivariance of an M-estimator by

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′i β
σ̂(n)

)

σ̂(n) has to be scale-equivariant and regression-invariant.
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The studentization requires special estimator of scale

Equivariance - invariance of σ̂2

σ̂2(Y ,X ) : M(n,p + 1)→ R+

scale-equivariant : ∀c ∈ R+ σ̂2(cY ,X ) = c2σ̂2(Y ,X )

regression-invariant : ∀b ∈ Rp σ̂2(Y + Xb,X ) = σ̂2(Y ,X )

Examples : s2
n = 1

n−p

∑n
i=1 r2

i (β̂
(OLS,n)) if L(ε) = N (µ, σ2)

σ̂(L1,n) = MAD if L(ε) = DoubleExp(λ)

σ̂(L1,n) = 1.483 ·MAD if L(ε) = N (µ, σ2)

MAD = med
1≤i≤n

∣∣∣∣ ri (β̂
(L1,n))− med

1≤i≤n ri (β̂
(L1,n))

∣∣∣∣ , IEN (0,1) MAD = (1.483)−1
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The studentization requires special estimator of scale

There are not too much estimators of scale of disturbances
which are consistent, scale-equivariant and regression-invariant:

Croux C., P. J. Rousseeuw (1992):
A class of high-breakdown scale estimators based on subranges.

Communications in Statistics - Theory and Methods 21, 1935 - 1951.

Jurečková, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium

on Asymptotic Statistics, Physica Verlag, 111-121.

Víšek, J. Á. (2010): Robust error-term-scale estimate.
IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference

and Time Series Analysis: Festschrift for Jana Jurečková, Vol. 7(2010), 254 - 267.
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There are not too much estimators of scale of disturbances
which are consistent, scale-equivariant and regression-invariant:

Croux C., P. J. Rousseeuw (1992):
A class of high-breakdown scale estimators based on subranges.

Communications in Statistics - Theory and Methods 21, 1935 - 1951.
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studentization in linear models. Proc. of the Fifth Prague Symposium

on Asymptotic Statistics, Physica Verlag, 111-121.

Víšek, J. Á. (2010): Robust error-term-scale estimate.
IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference

and Time Series Analysis: Festschrift for Jana Jurečková, Vol. 7(2010), 254 - 267.

Their common feature - all these estimators are based
on the scale- and regression-equivariant estimator of β0.
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Let’s remember for the next study:

Preliminary conclusion

We should prefer (robust) estimators of regression coefficients
which are “automatically” scale- and regression-equivarint.
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A pursuit for highly robust estimator of regression coefficients

Let’s recall:

Breakdown point - “finite” sample version

x1, x2, ..., xn ⇒ Tn(x1, x2, ..., xn)

Find maximal mn such that for any
y1, y2, ..., ymn ⇒ |Tn(x1, x2, ..., xn−mn , y1, y2, ..., ymn)| <∞

( 0 < Tn(x1, x2, ..., xn−mn , y1, y2, ..., ymn) <∞ - for scale ).

Put ε∗ = lim
n→∞

mn

n
.
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A pursuit for highly robust estimator of regression coefficients

Hampel’s approach - characteristics of the functional T at the d. f. F

Breakdown point - “finite” sample version - examples

x1, x2, ..., xn ⇒ Tn(x1, x2, ..., xn) =
1
n

∞∑
i=1

xi .

Maximal mn such that for any
y1, y2, ..., ymn ⇒ |Tn(x1, x2, ..., xn−mn , y1, y2, ..., ymn)| <∞

is zero,
hence ε∗ = 0.
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Hampel’s approach - characteristics of the functional T at the d. f. F

Breakdown point - “finite” sample version - examples

x1, x2, ..., xn ⇒ Tn(x1, x2, ..., xn) = med{x1, x2, ..., xn}.

Maximal mn such that for any
y1, y2, ..., ymn ⇒ |Tn(x1, x2, ..., xn−mn , y1, y2, ..., ymn)| <∞

is n
2 ,

hence
ε∗ =

1
2
.
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Linear regression
Feasible high breakdown point estimators

Repetition - notations, history, goals, misconceptions, snags and reality
Outliers and leverage points
Estimating regression model by alternative methods

A pursuit for highly robust estimator of regression coefficients

Hence, already in seventies, a question appeared:

CAN WE CONSTRUCT AN ESTIMATOR OF REGRESSION COEFFICIENTS

WITH ε∗ = 1
2 ?

see e. g.

ANDREWS, D. F., P. J. BICKEL, F. R. HAMPEL, P. J. HUBER, W. H. ROGERS,
J. W. TUKEY (1972):

Robust Estimates of Location: Survey and Advances.
PRINCETON UNIVERSITY PRESS, PRINCETON, N. J.

or

BICKEL, P. J. (1975): ONE-STEP HUBER ESTIMATES IN THE LINEAR MODEL.
J. Amer. Statist. Assoc. 70, 428–433.
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Estimating regression model by alternative methods

We had: Problems with studentization of residuals

Bickel, P. J. (1975): One-step Huber estimates in the linear model.
J. Amer. Statist. Assoc. 70, 428–433.

To reach scale- and regression-equivariance of an M-estimator by

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′i β
σ̂(n)

)

σ̂(n) has to be scale-equivariant and regression-invariant.

Assume we are able to find σ̂(n) fulfilling the requirements
- we can have still problems.
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Estimating regression model by alternative methods

Problems of M-estimators towards leverage points

M-estimator given by

β̂(M,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′i β
σ̂(n)

)
has to fulfill

n∑
i=1

Xiψ

(
Yi − X ′i β
σ̂(n)

)
= 0.

If ‖Xi‖ is large, the i-th observation has large impact on β̂(M,n).
The influence of leverage points on M-estimators can be (very) harmful.
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Feasible high breakdown point estimators

Repetition - notations, history, goals, misconceptions, snags and reality
Outliers and leverage points
Estimating regression model by alternative methods

Possible remedy for M-estimators

What about to define M-estimator by

β̂(M,n,w) = arg min
β∈Rp

n∑
i=1

w(Xi)ρ

(
Yi − X ′i β
σ̂(n)

)
where w(.) is a weight function.

β̂(M,n,w) is also called
Generalized Maximum likelihood-like estimator

of the regression coefficients or GM-estimator of β0, for short.
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Outliers and leverage points
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A pursuit for highly robust estimator of regression coefficients

Regression quantiles

Koenker,R., G. Bassett (1978): Regression quantiles.
Econometrica, 46, 33-50.

β̂(α) = arg min
β∈Rp

{
n∑

i=1

[α · |ri(β)| · I{ri(β) < 0}+ (1− α) · |ri(β)| · I{ri(β) > 0}]

}

β̂(L,n) =
K∑
`=1

c`β̂(α`)
β̂(α) is M- and simultaneously L-estimator
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A pursuit for highly robust estimator of regression coefficients

The trimmed least squares (TLS)

Ruppert, D., R. J. Carroll (1980):

Trimmed least squares estimation in linear model.

J. Americal Statist. Ass., 75 (372), 828–838.

Trimming by
[
x ′ · β̂(α1), x ′ · β̂(α2)

]
0 ≤ α1 < α2 ≤ 1 → β̂(TLS,n)(α1,α2)
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A pursuit for highly robust estimator of regression coefficients

DISAPPOINTMENT

Maronna, R. A., V. J. Yohai (1981): The breakdown point of simultaneous
general M-estimates of regression and scale.

J. of Amer. Statist. Association, vol. 86, no 415, 699 - 704.

!!! ε∗ =
1
p

!!!

(p - dimension of regression model)
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The First Estimator with 50% Breakdown Point

Repeated medians

Siegel, A. F. (1982): Robust regression using repeated medians.
Biometrica, 69, 242 - 244.

β̂(j) = med
i1=1,2,...,n

(
...

(
med

ip−1=1,2,...,n

(
med

ip=1,2,...,n

(
β̂j (i1, i2, ..., ip)

))))

(requiring approx. p · n p evaluations of model and orderings of estimates of coefficients
- nearly surely never implemented)
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Feasible high breakdown point estimators

Deleting some observations

A pursuit for highly robust estimator of regression coefficients

Prior to continuing let us make an agreement:

For any β ∈ Rp

ri(β) = Yi − X ′i β not only ri(β̂) = Yi − X ′i β̂

Order statistics
r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β),

some texts alternatively employ

r2
(1:n)(β) ≤ r2

(2:n)(β) ≤ ... ≤ r2
(n:n)(β).
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Linear regression
Feasible high breakdown point estimators

Deleting some observations

The first solution broke the mystery and implied a chain of others

Rousseeuw, P. J. (1983): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.

the Least Median of Squares

β̂(LMS,n,h) = arg min
β∈Rp

r 2
(h)(β)

n
2
< h ≤ n,

(implementation will be discussed later).

Many advantages - mainly

1

breakdown point equal to ([ n−p
2 ] + 1)n−1 if h = [ n

2 ] + [ p+1
2 ]

2 scale- and regression equivariant
(without any studentization of residuals).
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the Least Median of Squares

β̂(LMS,n,h) = arg min
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r 2
(h)(β)

n
2
< h ≤ n,

(implementation will be discussed later).
Many advantages - mainly

1

breakdown point equal to ([ n−p
2 ] + 1)n−1 if h = [ n

2 ] + [ p+1
2 ]

2 scale- and regression equivariant
(without any studentization of residuals).

Main disadvantage
3
√

n
(
β̂(LMS,n,h) − β0

)
= Op(1)(other will be discussed later).
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Deleting some observations

Let’s remove the deficiency of low rate of convergence of LMS

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel (1986):
Robust Statistics – The Approach Based on Influence Functions.

New York: J.Wiley & Son.

the Least Trimmed Squares

β̂(LTS,n,h) = arg min
β∈Rp

h∑
i=1

r 2
(i)(β)

n
2
< h ≤ n,

(Notice the order of words, remember there is also the Trimmed Least Squares.)

Many advantages - e. g.

1 the breakdown point equal to ([ n−p
2 ] + 1)n−1 if h = [ n

2 ] + [ p+1
2 ]

2 scale- and regression equivariant

3
√

n
(
β̂(LTS,n,h) − β0

)
= Op(1)
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Deleting some observations

Let’s increase the efficiency with simultaneously keeping high breakdown point

Rousseeuw, P. J., V. Yohai (1984):
Robust regressiom by means of S-estimators.

Lecture Notes in Statistics No. 26 Springer Verlag, New York, 256-272.

S-estimators

β̂(S,n,ρ) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)

σ

)
= b

}
where b = IEρ

(
ei
σ0

)
with σ2

0 = IEe2
1 (for ρ see next slide).

Many advantages - e. g.

1 the breakdown point equal to 50%,
2 scale- and regression equivariant,

3
√

n
(
β̂(S,n,ρ) − β0

)
= Op(1),

4 much better utilization of information from data,
i. e. higher efficiency than LTS.

69 / 71



Linear regression
Feasible high breakdown point estimators

Deleting some observations

Let’s increase the efficiency with simultaneously keeping high breakdown point

Rousseeuw, P. J., V. Yohai (1984):
Robust regressiom by means of S-estimators.

Lecture Notes in Statistics No. 26 Springer Verlag, New York, 256-272.

S-estimators

β̂(S,n,ρ) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)

σ

)
= b

}
where b = IEρ

(
ei
σ0

)
with σ2

0 = IEe2
1 (for ρ see next slide).

Many advantages - e. g.

1 the breakdown point equal to 50%,

2 scale- and regression equivariant,

3
√

n
(
β̂(S,n,ρ) − β0

)
= Op(1),

4 much better utilization of information from data,
i. e. higher efficiency than LTS.

69 / 71



Linear regression
Feasible high breakdown point estimators

Deleting some observations

Let’s increase the efficiency with simultaneously keeping high breakdown point

Rousseeuw, P. J., V. Yohai (1984):
Robust regressiom by means of S-estimators.

Lecture Notes in Statistics No. 26 Springer Verlag, New York, 256-272.

S-estimators

β̂(S,n,ρ) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)

σ

)
= b

}
where b = IEρ

(
ei
σ0

)
with σ2

0 = IEe2
1 (for ρ see next slide).

Many advantages - e. g.

1 the breakdown point equal to 50%,
2 scale- and regression equivariant,

3
√

n
(
β̂(S,n,ρ) − β0

)
= Op(1),

4 much better utilization of information from data,
i. e. higher efficiency than LTS.

69 / 71



Linear regression
Feasible high breakdown point estimators

Deleting some observations

Let’s increase the efficiency with simultaneously keeping high breakdown point

Rousseeuw, P. J., V. Yohai (1984):
Robust regressiom by means of S-estimators.

Lecture Notes in Statistics No. 26 Springer Verlag, New York, 256-272.

S-estimators

β̂(S,n,ρ) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)

σ

)
= b

}
where b = IEρ

(
ei
σ0

)
with σ2

0 = IEe2
1 (for ρ see next slide).

Many advantages - e. g.

1 the breakdown point equal to 50%,
2 scale- and regression equivariant,

3
√

n
(
β̂(S,n,ρ) − β0

)
= Op(1),

4 much better utilization of information from data,
i. e. higher efficiency than LTS.

69 / 71



Linear regression
Feasible high breakdown point estimators

Deleting some observations

Let’s increase the efficiency with simultaneously keeping high breakdown point

Rousseeuw, P. J., V. Yohai (1984):
Robust regressiom by means of S-estimators.

Lecture Notes in Statistics No. 26 Springer Verlag, New York, 256-272.

S-estimators

β̂(S,n,ρ) = arg min
β∈Rp

{
σ ∈ R+ :

n∑
i=1

ρ

(
ri(β)

σ

)
= b

}
where b = IEρ

(
ei
σ0

)
with σ2

0 = IEe2
1 (for ρ see next slide).

Many advantages - e. g.

1 the breakdown point equal to 50%,
2 scale- and regression equivariant,

3
√

n
(
β̂(S,n,ρ) − β0

)
= Op(1),

4 much better utilization of information from data,
i. e. higher efficiency than LTS.

69 / 71



Linear regression
Feasible high breakdown point estimators

Deleting some observations

Peter Rousseeuw’s objective function ρ

ρ : (−∞,∞)→ (0,∞), ρ(x) = ρ(−x), ρ(0) = 0, ρ(x) = c for x > d .
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