SubjectsSubjects(version: 945)
Course, academic year 2014/2015
   Login via CAS
Classical Electrodynamics - NUFY096
Title: Klasická elektrodynamika
Guaranteed by: Department of Physics Education (32-KDF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014 to 2017
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Leoš Dvořák, CSc.
doc. RNDr. Mgr. Vojtěch Žák, Ph.D.
Classification: Physics > Teaching
Annotation -
Last update: T_KDF (12.05.2015)
The subject focuses on the explanation of basic concepts and equations of the theory of electromagnetic field. It shows that the theory can explain the most important phenomena students learned in lecture Physics II and some other phenomena are derived.
Aim of the course -
Last update: T_KVOF (28.03.2008)

The lecture introduces basic concepts and equations of the theory of electromagnetic field. It shows that the theory can explain most important phenomena students learned in lecture Physics II and derives some other phenomena.

Literature -
Last update: T_KDF (12.05.2015)

Kvasnica, J. (1986). Teorie elektromagnetického pole. Praha: Academia.

Sedlák, B., & Štoll, I. (2012). Elektřina a magnetismus. Praha: UK v Praze, Karolinum.

Doplňková literatura:

Jackson, J. D. (1962). Classical Electrodynamics. New York, London: Wiley.

Stratton, J. A. (1961). Teorie elektromagnetického pole. Praha: SNTL.

Votruba, V., & Muzikář, C. (1958). Teorie elektromagnetického pole. Praha: Nakladatelství ČSAV.

Teaching methods - Czech
Last update: doc. RNDr. Mgr. Vojtěch Žák, Ph.D. (24.09.2020)

přednáška

Syllabus -
Last update: T_KDF (12.05.2015)

Maxwell´s equations and their implications: Laplace-Poisson equation, Coulomb´s law, Gauss´s theorem.

Scalar and vector description of electrostatic field - potential, equipotential surfaces, intensity, field lines.

Electric dipole and multipole expansion.

Energy in electric field.

Continuity equation, Ohm´s law.

Charged particle motion - in homogeneous electric field, magnetic field and in electromagnetic field where the electric field is perpendicular to the magnetic field.

Ampère´s law, Biot-Savart law and Faraday´s law of electromagnetic induction.

Magnetic dipole and its field.

Coulomb gauge and Lorentz gauge.

Electromagnetic potentials (scalar and vector) and gauge transformations.

Electromagnetic waves - generating, polarization, diffraction, interference, coherence, reflection and refraction.

Energy and momentum of electromagnetic field, their flows, Poynting vector, energy and momentum conservation laws.

Retardation and retarded potentials.

Radiation of electromagnetic waves.

Waves in nonconducting and conducting media.

Quasistationary electromagnetic field, skin-effect.

Limits of classical electrodynamics.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html