SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Classical Electrodynamics - NUFY049
Title: Klasická elektrodynamika
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Jan Obdržálek, CSc.
Classification: Physics > Teaching
Annotation -
Last update: T_KDF (23.05.2001)
The lecture introduces basic quantities and equations of the theory of electromagnetic field. It shows that the theory can explain most important phenomena students learned in lecture Physics II and derives some other phenomena. For students of the 3rd year of combination Math and Physics and Physics for High Schools and for students of the 4th year of combination Physics and Physics / Informatics for High Schools.
Literature - Czech
Last update: RNDr. Pavel Zakouřil, Ph.D. (05.08.2002)

Kvasnica J.: Teorie elektromagnetického pole. Academia, Praha 1985

Votruba V., Muzikář Č.: Teorie elektromagnetického pole. NČSAV, Praha 1958

Stratton J.A.: Teorie elektromagnetického pole. SNTL - TKI, Praha 1961

Kvasnica J.: Fyzikální pole. SNTL - Populární přednášky o fyzice, Praha 1964

Panofsky W., Phillips M.: Classical Electricity and Magnetism. Addison - Wesley (ruský překlad Panovskij V., Filips M.: Klassičeskaja elektrodinamika. Gos.izd. fiz.-mat.lit., Moskva 1963)

Jackson J.D.: Classical Electrodynamics. Wiley, N.Y.-London 1962 (ruský překlad Džekson Dž.: Klassičeskaja elektrodinamika. Mir, Moskva 1965)

Landau L.D., Lifšic E.M.: Teorija polja (Teoretičeskaja fizika tom 2). Gos.iz.fiz.-mat.lit., Moskva 1962

Syllabus -
Last update: T_KVOF (26.05.2003)

Basic physical concepts: field x particles, the field concept of

interaction. Maxwell equations. Discuccion.

Math: Tensor calculus, distributions (delta-function), Green functions.

Fourier transformation. Integral theorems: Gauss-Ostrogradskij, Stokes,

Green.

Full set of Maxwell equations. Boundary conditions, material relations.

Meaning of E, D, P etc.

Microscopic view: Lorentz electron theory.

Special cases of elmg. field concerning time dependency: Stationary

field (Biot-Savart law), quasistationary field (skin effect).

Equivalency of magnetic dipole layer and current loop. Static field

(Multipoles).

Consarvation laws in elgm. field: Charge, energy, momentum.

Poynting-Umov vector.

Wave equations: D'Alembert operator. Callibration transformation

(Lorentz, Coulomb).

Homogenous equations. Non-conducting media. Optics as a result of

Maxwell equations. Fresnel's formulae.

Non-homogenous equations: fields and their sources. Advanced and

retadred potentials, Liérard-Wiechert. Hertz dipole, Bremsstrahlung.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html