SubjectsSubjects(version: 945)
Course, academic year 2014/2015
   Login via CAS
Physics V - NUFY016
Title: Fyzika V
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2007 to 2021
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/1, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Miroslav Kučera, CSc.
prof. RNDr. Helena Štěpánková, CSc.
Classification: Physics > Teaching
Annotation -
Last update: G_F (05.06.2001)
Integrated course - lecture and exercises overlap. Course of optics and special theory of relativity on the level appropriate for future teachers. Considered for the 3rd year teacher students of mathematics - physics /basic school.
Literature - Czech
Last update: MKUCERA/MFF.CUNI.CZ (15.05.2008)

základní

A.Beiser, Úvod do moderní fyziky, Academia 1978

V.Hajko, Fyzika v príkladoch, SNTL 1960

Z.Horák, F.Krupka, Fyzika, SNTL 1966

E.Klier, Optika, skriptum MFF UK, 1978

J.Kolovrat, Příklady z optiky, skriptum MFF UK, 1979

D. Halliday, R.Resnick, J. Walker, Fyzika, část 4 a 5, Vutium, Brno 2001

B.Sedlák, I.Štoll, Elektřina a magnetismus, kap.5, Academia 1993

A.Štrba, Optika, Alfa 1979

doplňující

R.P.Feynman, Feynmanové prednášky z fyziky 1, 2, 4, Alfa 1982-8

S.E.Friš, A.V.Timoreva, Kurs fyziky III

I.G.Main, Kmity a vlny ve fyzice, Academia 1990

B.E.A.Saleh, M.C.Teich, Základy fotoniky, Matfyzpress 1995

Š.Višňovský, Makroskopická elektrodynamika, skriptum MFF UK 1997

V.Votruba, Speciální teorie relativity, Academia 1969

Teaching methods - Czech
Last update: MKUCERA/MFF.CUNI.CZ (15.05.2008)

přednáška a cvičení

Syllabus -
Last update: T_KFNT (20.05.2003)
1. Introduction

  • Subject and parts of optics. History of approaches to the nature of light. Light velocity measurements. Fermat's principle, optical path, ray. Huygens and Huygens-Fresnel principle, wavefront.

2. Wave and electromagnetic optics

  • Maxwell equations in free space, wave equation. Characteristics of radiation, spatial density of electromagnetic energy, energy flow density, Poynting vector, radiation pressure, instantaneous and time-averaged values.
  • Wave: electromagnetic; plane, spherical, cylindrical; monochromatic, harmonics. Radiation of oscillating electric dipole. Propagation of waves. Wavevector, frequency, wavelength, phase, phase velocity. Spectral range of optical radiation. Polarisation (linear, circular, elliptical).
  • Superposition of waves, path/phase delay, temporal coherence. Standing wave.
  • Interference - constructive/destructive, Young experiment, spatial coherence, interference on a thin layer, antireflection layer, interferometers (Fabry-Perot, Michelson). Holography.
  • Diffraction - Fraunhofer/Fresnel diffraction, diffraction patterns for a slit, circular aperture, circular target, edge. Fresnel zones. Diffraction grating, resolution, Rayleigh criterion.
  • Optical media - classification.
  • Refractive index. Dispersion of refractive index, phase/group velocity. Absorption, Lambert-Beer law.
  • Optical anisotropy, birefringence. Polarisers, wave retarders (quarter-wave, half-wave plate). Malus' law.
  • Dichroism. Polaroid. Optical activity.
  • Light scattering, elastic and non-elastic.
  • Reflection and refraction at a planar interface, angle and plane of incidence/reflection/refraction. Snell's law. Fresnel formulae, reflectance, transmittance, total reflection, critical angle, Brewster angle. Polarised light using reflection and refraction

3. Geometrical (ray) optics

  • Axioms.
  • Basic optical elements. Prisms: reflective, refractive, dispersive. Lenses. Mirrors.
  • Colinear transformation. Cardinal points and planes of an imaging system: focal points and planes, principal points and planes, nodal points, focal lengths. Imaging formulae. Real/virtual image. Image magnification. Centred optical systems converging, diverging, telescopic.
  • Optical imaging using paraxial rays. Spherical interface. Lenses: converging, diverging, thin/thick; mirror: plane, concave, convex.
  • Aberrations and their compensations: spherical aberration, coma, field curvature, distorsion, astigmatism, chromatic aberration.
  • Optical instruments: telescope, magnifying glass, microscope. Objective, eyepiece, magnification, resolution power. Camera. Spectrometer. Optical waveguide. * 4. Basics of quantum optics
  • Blackbody radiation, Planck's law, Wien's law, Stephan-Boltzmann law. Fotoeffect, work function. Quantum characteristics of radiation, photon.
  • Spontaneous and stimulated emission. Optical resonator. Population inversion. Lasers.

5. Human and light

  • Human eye: anatomy, eye as an optical system. Perception of light, colours. Additive/ subtractive mixing of colours. - Accommodation, near point. Glasses. Adaptation, Purkyne's effect.

6. Photometry

  • Basic quantities in photometry and radiometry. Sources and detectors.

7. Special theory of relativity

  • Postulates. Inertial systems. Michelson-Morley experiment. Galileo transformation, Lorentz transformation. Space-time. Time dilatation. Length contraction. Relativity of simultaneity. Transformation of velocity. Doppler effect.
  • Relativistic mass and momentum, rest mass. Total energy, kinetic energy. Equation of motion. Equivalence of mass and energy.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html