SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
General Theory of Relativity - NTMF111
Title: Obecná teorie relativity
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:3/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Additional information: http://utf.mff.cuni.cz/vyuka/NTMF111/
Guarantor: doc. RNDr. Oldřich Semerák, DSc.
Annotation -
Last update: T_UTF (27.04.2011)
First semester of the course of general relativity and its applications in astrophysics and cosmology. Introduction to general relativity: principle of equivalence and principle of general covariance, parallel transport and geodesics, gravitational shift of frequency; curvature, energy-momentum tensor and Einstein's gravitational law. Schwarzschild solution of the Einstein equations, the notion of black hole. Homogeneous and isotropic cosmological models. For the bachelor study of physics, mainly for students who plan to graduate in theoretical physics or astronomy and astrophysics.
Course completion requirements - Czech
Last update: doc. RNDr. Oldřich Semerák, DSc. (24.04.2020)

Ústní zkouška.

V r. 2020 může být v řadě případů nutné zorganizovat zkoušení distanční formou. Závisí to na vývoji aktuální situace, podrobnosti dohodne vyučující přímo se studenty.

Literature - Czech
Last update: doc. RNDr. Oldřich Semerák, DSc. (14.02.2022)
  • Bičák J., Semerák O.: Relativistic Physics (online lecture notes)
  • Dvořák L.: Obecná teorie relativity a moderní fyzikální obraz vesmíru (skriptum SPN, Praha 1984)
  • Schutz B.: A First Course in General Relativity, 2nd ed. (Cambridge Univ. Press, Cambridge 2009)
  • Stephani H.: Relativity: An Introduction to Special and General Relativity, 3rd ed. (Cambridge Univ. Press, Cambridge 2004)
  • Misner C. W., Thorne K. S., Wheeler J. A.: Gravitation (Freeman, San Francisco 1973)
  • Kuchař K.: Základy obecné teorie relativity (Academia, Praha 1968)
  • Videozáznamy přednášek
Requirements to the exam - Czech
Last update: doc. RNDr. Oldřich Semerák, DSc. (24.04.2020)

Zkouška je ústní, požadavky odpovídají sylabu předmětu, v detailech pak tomu, co bylo během semestru odpřednášeno.

(Pro rok 2020 platí látka probraná na videozáznamu kursu.)

Syllabus -
Last update: doc. RNDr. Oldřich Semerák, DSc. (14.02.2022)
Introduction.
Theory of gravitation in physical picture of the world. Evolution of ideas on space, time and gravitation. Outline of main starting-points, predictions and applications of general theory of relativity. Reminding the formalism of special relativity (lecture NOFY023).

Starting principles and their immediate applications.
Principle of equivalence, its various formulations and relevant experiments. Principle of general covariance ('general relativity'). Parallel transport, affine connection and Christoffel symbols. Equation of geodesic and its Newtonian limit. Time dilation and frequency shift in gravitational field, Newtonian limit: static case and orbiting-satellite case. Covariant derivative: introducing covariant and absolute derivative, rewriting the parallel-transport and geodesic equations.

Curvature.
Riemann curvature tensor, its symmetries, geometrical and physical meaning (non-integrability of parallel transport, equation of geodesic deviation). Bianchi identities. Ricci tensor and curvature scalar.

Energy-momentum tensor and conservation laws.
Energy-momentum tensor of charged incoherent dust and of (its) EM field. Ideal fluid: conservation laws, Euler equation of motion and equation of continuity; conditions of hydrostatic equilibrium.

Einstein's gravitational law.
Motivation. Derivation of Einstein equations on the basis of the Riemann-tensor uniqueness, Bianchi identities, conservation laws and Newtonian limit of the theory. The question of cosmological constant. Properties of Einstein equations. Principle of minimal coupling.

Lie derivative and space-time symmetries.
Vector field and its flow, natural concept of scalar and vector transport and its coordinate expression. Lie derivative and space-time isometries. Basic properties of Killing vector fields.

Schwarzschild solution of Einstein equations.
Metric of spherically symmetric spacetime, Birkhoff's theorem. Basic features of Schwarzschild metric, Schwarzschild black hole - horizon, singularity. Motion of free spinless test particles in the Schwarzschild field - constants of motion, effective potentials, capture and escape of particles; comparison with Keplerian motion in Newtonian central gravitational field.

Relativistic cosmology.
Basic observational data on universe as a whole - distribution of mass, Hubble formula, relict radiation, 'big bang'. Description of 'cosmic fluid', homogeneity and isotropy of the universe and introduction of comoving coordinates. Spatial geometry on hypersurfaces of homogeneity and Friedmann-Lemaitre-Robertson-Walker metric. Roles of matter and radiation. Einstein equations and basic cosmological models - qualitative discussion. Friedmann cosmological models. Cosmology in terms of 'Omega-factors'.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html