SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Quantum Mechanics I - NOFY045
Title: Kvantová mechanika I
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: winter
E-Credits: 9
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Jan Kvasil, DrSc.
Classification: Physics > General Subjects
Incompatibility : NBCM110, NFPL010, NJSF060, NJSF094, NTMF066
Is co-requisite for: NOFY046
Is incompatible with: NBCM110, NJSF094, NTMF066, NFPL010
Is pre-requisite for: NHIF009, NJSF014
Annotation -
Last update: T_UCJF (19.05.2003)
Foundations and general formalism. Schroedinger equation, one- and two-body problems. Systems of identical particles. Symmetries and conservation laws. Approximative methods. Scattering theory. Single-particle relativistic wave equations.
Literature - Czech
Last update: RNDr. Pavel Zakouřil, Ph.D. (05.08.2002)

Davydov, Kvantovaja mechanika, GIFML, 1963 (existuje český překlad)

Landau, J.M. Lifšic, Kvantovaja mechanika, NAUKA, 1974

Schiff, Quantum Mechanics, McGraw Hill 1955

Formánek, Úvod do kvantové teorie, Academia 1983 excitované stavy, atom, Mendělejova periodická soustava.

Davydov, Kvantovaja mechanika, GIFML, 1963 (existuje český překlad)

Landau, J.M. Lifšic, Kvantovaja mechanika, NAUKA, 1974

Schiff, Quantum Mechanics, McGraw Hill 1955

Formánek, Úvod do kvantové teorie, Academia 1983

Syllabus -
Last update: T_UCJF (19.05.2003)

Contents:

Basic postulates of quantum mechanics. The wave function. Superposition principle.

Operators of physical observables. Eigenvalues and eigenfunctions, their physical meaning. Compatibility of physical quantities. Complete sets of observables. Uncertainty relations. Mixed states, their description in terms of the density matrix.

Time development of quantum states. The Schroedinger equation. Stationary states. Time development of mean values. Semiclassical limit of quantum mechanics. The WKB approximation.

Stationary states of particles moving in one and three dimensions.

1D harmonic oscillator. Particle in 1D rectangular potential well. Free particle in 3D moving with sharp values of angular momentum quantum numbers. Particle in 3D rectangular potential well. 3D spherically symmetric harmonic oscillator. Particle in 3D Coulomb field, its bound and scattering states.

Basic concepts of representation theory. Momentum representation. Energy representation. Evolution operators. The Heisenberg picture of quantum mechanics, its realation to the Schoedinger picture.

Symmetries of quantum systems. Transformations of quantum states under translations, rotations, space reflection and time reversal. Generators of infinitesimal translations and rotations, operators of parity and of time reversal. Invariaces and their manifestations.

Theory of angular momentum. Addition of two angular momenta, Clebsch-Gordan coefficients. Addition of three and more angular momenta, 6j- and 9j-symbols. The rotation group, its representations, Wigner D-functions. Irreducible tensorial operators, the Wigner-Eckart theorem.

Literature:

A. Bohm, Quantum Mechanics: Foundations and Applications, 2nd ed., Springer 1986

J. Formanek, Uvod do kvantove theorie, Academia, Praha 1983

D. J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall 1995

L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Pergamon Press, 1977

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html