SubjectsSubjects(version: 945)
Course, academic year 2014/2015
   Login via CAS
Physics III (Optics) - NOFY022
Title: Fyzika III (optika)
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2013 to 2014
Semester: winter
E-Credits: 7
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Petr Malý, DrSc.
doc. RNDr. Pavel Hlídek, CSc.
prof. RNDr. Jaromír Plášek, CSc.
Classification: Physics > General Subjects
Is co-requisite for: NOOE021
Annotation -
Last update: T_KVOF (16.05.2003)
A semester lecture in optics. This is a part of the basic course in physics, for the 2nd year students.
Aim of the course -
Last update: T_KVOF (28.03.2008)

A semester lecture in optics. This is a part of the basic course in physics, for the 2nd year students.

Literature - Czech
Last update: prof. RNDr. Petr Malý, DrSc. (30.08.2015)
  • /1/ E. Klier: Optika ( skriptum ) SPN Praha 1980
  • /2/ J. Kolovrat: Příklady z optiky, SPN Praha 1979
  • /3/ P. Malý, J. Pantoflíček: Doplňkový text k přednášce z optiky (Doplňkový text OZVF ) MFF UK Praha 1989
  • /4/ M. Born, E. Wolf: Principles of Optics, Pergamon Press, Oxford 1980
  • /5/ A. Štrba: Optika, Alfa Bratislava 1978
  • /6/ F.L. Pedrotti, L.S. Pedrotti: Introduction to Optics, Prentice-Hall Internat. 1993
  • /7/ R. W. Pohl: Optik und Atom Physics, Springer Berlin 1963 (ruský překlad Nauka Moskva 1966)
  • /8/ J. Fuka, B. Havelka: Optika, SPN Praha 1961
  • /9/ B. Havelka: Geometrická optika I, II, NČSAV Praha 1955
  • /10/ Miler: Holografie, SNTL Praha 1974SPN Praha 1980

Teaching methods - Czech
Last update: prof. RNDr. Petr Malý, DrSc. (16.10.2020)

přednáška + cvičení

Syllabus -
Last update: prof. Ing. Jan Franc, DrSc. (17.09.2021)

1. Electromagnetics waves.

  • Plane and spherical electromagnetic waves, their properties.
  • Complex representation of monochromatic wave. Dipole radiation.
  • Electromagnetic origin of light, spectral ranges of electromagnetic waves.
  • Propagation of monochromatic electromagnetic wave in vacuum.
  • Polarization of light. Description of polarization.
  • Propagation of monochromatic electromagnetic wave in non-conductive, isotropic and linear medium. Propagation of light in conductors.
  • Reflection and refraction of plane waves on plane interface, Fresnel formulae.

2. Quasi-monochromatic electromagnetic waves.

  • Generic electromagnetic wave in linear medium. Fourier analysis, spectrum. Phase and group velocities.
  • Superposition of electromagnetic waves. Two-beam interference, Young`s experiment. Multiple-beam interference.
  • Coherence of light. Temporal and spatial coherence. Complex degree of coherence.
  • Optical interferometers, applications.

3. Diffraction phenomena.

  • Huygens-Fresnel`s principle.
  • Fraunhofer diffraction. Optical diffraction grating.
  • Fresnel diffraction. Fresnel zones.
  • Optical imaging. Fourier optics. Principles of holography.

4. Geometrical and instrumental optics.

  • Short-wave approximation, eiconal equation, light ray. Huygens` principle, Fermat`s principle.
  • Paraxial optics. Imaging equations. Optical imaging by reflection and refraction on a spherical interface.
  • Aberations.
  • Opical imaging instruments (eye, magnifier, glasses, microscope, telescope, photographic apparatus). - Basics of photometry.
  • Spectral instruments - prism, grating, interferometers. Principles of optical spectroscopy.

5. Propagation of light in anisotropic media

  • Propagation of light in anisotropic media, Fresnel equation.
  • Geometrical construction, indicatrix.
  • Optical properties of crystals. Application of birefringence: polarizers, compensators.

6. Wave-corpuscular dualism.

  • Spectrum of black-body radiation. Planck`s law.
  • Photoelectric effect. Photon. Compton effect.
  • X-ray spectrum.
  • Diffraction of particles, experiments of Davisson - Germer. De-Broglie waves.

7. Interaction of electromagnetic radiation with matter.

  • Absorption and emission. Stimulated and spontaneous transitions. Principles of laser.
  • Dispersion. Relation between index of refraction and absorption coefficient. Lorentz theory of dispersion.
  • Light scattering, elastic and non-elastic scattering.

8. Fourier optics.

  • Fraunhofer diffraction and Fourier transformation. Optical filtering. Optical correlation, convolution. Pattern recognition.

9.Principles of fiber optics.

  • Guided light waves. Modes. Attenuation. Types of optical fibers. Application.

10.Introduction to photonics.

  • Principles of light detection.
  • Nonlinear optics. Second harmonic generation, frequency mixing.
  • Self-focusing, self-phase modulation. Optical phase conjugation.
  • Electro-optic and acousto-optic modulation of light.
  • Optical switches, memories.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html