SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Finite Element Method 1 - NMNV405
Title: Metoda konečných prvků 1
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016 to 2016
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Jaroslav Haslinger, DrSc.
Class: M Mgr. MA
M Mgr. MA > Povinně volitelné
M Mgr. MOD
M Mgr. MOD > Povinné
M Mgr. NVM
M Mgr. NVM > Povinné
Classification: Mathematics > Differential Equations, Potential Theory, Numerical Analysis
Comes under: Doporučené přednášky 2/2
Incompatibility : NNUM002, NNUM015
Interchangeability : NNUM002, NNUM015
Is incompatible with: NNUM015, NNUM002
Is interchangeable with: NNUM015, NNUM002
Annotation -
Last update: T_KNM (28.04.2015)
The aim of this course is to present the mathematical theory of finite element methods and their applications in solving linear elliptic equations. This covers: approximation theory for mappings preserving polynomials , application to the Lagrange and Hermite interpolation of functions in multidimensional space , description of the most frequently used finite elements, the error analysis, numerical integration in FEM.
Literature
Last update: doc. Mgr. Petr Knobloch, Dr., DSc. (11.10.2017)

J. Haslinger: Metoda konečných prvků pro řešení variačních rovnic a nerovnic eliptického typu, skripta, Praha 1980

P.G. Ciarlet: The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications 4, North Holland Publishing Company, Amsterdam, 1978

S.C. Brenner, L.R.Scott: The Mathematical Theory of Finite Element Methods, Text in Applied Mathematics 15, Springer-Verlag, 1994

Syllabus -
Last update: doc. Mgr. Petr Knobloch, Dr., DSc. (11.10.2017)

Abstract linear elliptic equations, Lax-Milgram theorem;

Ritz-Galerkin approximation, Cea's lemma;

Lagrange and Hermite finite elements,examples, concept of affine equaivalence;

Construction of finite element spaces, satisfaction of stable boundary conditions;

Approximation theory in Sobolev spaces, application to Lagrange and Hermite interpolation of functions;

Error estimates for Ritz-Galerkin approximations in the energy and L2- norm.

Numerical integration in FEM, errors of quadrature formulas, error of full finite element approximation in the presence of numerical integration

Special topics: mixed finite element approximations, Babuska-Brezzi condition, applications in flow problems

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html