SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
General Topology 1 - NMMA345
Title: Obecná topologie 1
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Jiří Spurný, Ph.D., DSc.
Class: M Bc. OM
M Bc. OM > Zaměření MA
M Bc. OM > Povinně volitelné
Classification: Mathematics > Topology and Category
Incompatibility : NMAT039, NMMA335
Interchangeability : NMAT039, NMMA335
Annotation -
Last update: doc. Mgr. Petr Kaplický, Ph.D. (04.06.2019)
An elementary course in general topology for bachelor's program in General Mathematics. Recommended for specialization Mathematical Analysis.
Course completion requirements - Czech
Last update: prof. RNDr. Jiří Spurný, Ph.D., DSc. (13.10.2023)

Zkouška je ústní a její obsah odpovídá sylabu tohoto předmětu v rozsahu, který byl prezentován na přednášce.

Součástí zkoušky je i látka probraná v rámci cvičení. Složením zkoušky lze získat současně zápočet.

Literature - Czech
Last update: doc. Mgr. Benjamin Vejnar, Ph.D. (29.09.2022)

R. Engelking, General Topology, PWN Warszawa 1977

J. L. Kelley, General Topology, D. Van Nostrand, New York 1957

J. Dugundji, Topology, Boston 1966 (1978)

J. I. Nagata, Modern General Topology, North-Holland 1985 (1968, 1975)

E. Čech, Topological Spaces, Academia, Praha 1966

Syllabus -
Last update: doc. Mgr. Petr Kaplický, Ph.D. (04.06.2019)

1. A concept of a topological space

Open and closed sets; interior and closure; neighborhood systems; base of topology, base of neighborhoods of a point; countable weight and countable character, separability; convergence of sequences and nets (* of filters) and Hausdorff spaces (* T_0-, T_1-spaces); continuous mappings; examples of metrizanle and non-metrizable spaces.

2. Operations on topological spaces

Subspace, sum and quotient, product; projective (weal, initial) generation, inductive (strong, final) generation; preserving properties; countable product of metrizable (completely metrizable, compact metrizable) spaces, Hulbert cube.

3. Completely regular spaces - embedding into a power of reals

Embedding lemma (diagonal product); complete regularity and its preserving by products and subspaces; embedding into Tichonov cube (power of reals); embedding of separable metrizable space into Hilbert cube (* metrizablity of T_3-spaces with countable base).

4. Normal spaces - extension of real-valued functions

Normal space and example of metrizable spaces; * counterexamples to preserving by subspaces and products; Urysohn lemma; Urysohn extension theorem; complete regularity of T_4-spaces.

5. Compact and Lindelof spaces

Definition by means of covers; characterization by means of nets (* filters, ultrafilters); preserving by continuous images, by closed subspaces; countable and sequential compactness; example of metrizable spaces; extremes and boundedness of real-valued functions; normality of Lindelof spaces; *product of Lindelof spaces that is not Lindelof.

6. Function spaces on compact sets

Space C(K); algebras and lattices of continuous functions; Stone-Weierstrass theore; consequences.

7. Tichonov theorem and Cech-Stone compactification, extension of meppings

Proof of compactness of products; compactness of Tichonov cube; compactifications; Cech-Stone compactification; extension of continuous mappings; * ultrafilters and beta-hull of N.

8. Cech-completeness and Baire theorem

Topological completeness of metrizable spaces; completion of metrizable space; Cech-completeness; examples of locally compact and completely metrizable spaces; Baire theorem; *uniform space and its completion.

9. Topological groups

Topological group; uniformities on topological groups; complete regularity.

Entry requirements - Czech
Last update: doc. Mgr. Benjamin Vejnar, Ph.D. (29.09.2022)

Znalost základů teorie metrických prostorů v rozsahu vyučovaném v Matematické analýze prvního dvouletí.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html