SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Physics II - Basic Course - NFOE012
Title: Fyzika II - základní kurz
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2012
Semester: winter
E-Credits: 8
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Vladimír Baumruk, DrSc.
doc. Ing. Petr Praus, CSc.
prof. RNDr. Marek Procházka, Ph.D.
Classification: Physics > External Subjects
Annotation -
Last update: T_KVOF (29.01.2003)
The second part of the introductory physics course for chemistry students (Faculty of Sciences). The course contains fundamentals of electric and magnetic fields, electromagnetic induction, linear direct and alternating current circuits, Maxwell's equations, electromagnetic waves, fundamentals of wave and geometrical optics.
Aim of the course -
Last update: T_KVOF (28.03.2008)

The second part of the introductory physics course for chemistry students (Faculty of Sciences).

The course contains fundamentals of electric and magnetic fields, electromagnetic induction, linear direct and alternating current circuits, Maxwell's equations, electromagnetic waves, fundamentals of wave and geometrical optics.

Course completion requirements -
Last update: prof. RNDr. Marek Procházka, Ph.D. (30.10.2019)

Credit is necessary for the exam.

Literature - Czech
Last update: T_KVOF (30.01.2003)
  • Stručné podklady k přednášce: http://sals.natur.cuni.cz/
  • D.Halliday, R.Resnick, J.Walker: Fyzika. Část 3. Elektřina a magnetismus, Část 4.
  • Elektromagnetické vlny - optika - relativita. VUT v Brně - nakladatelství VUTIUM a nakladatelství PROMETHEUS Praha, 2000.
  • B.Sedlák, I.Štoll: Elektřina a magnetismus. Academia Praha, Vydavatelství Karolinum 1993
  • B.E.A.Saleh, M.C.Teich: Základy fotoniky, sv. 1 a 2. Matfyzpress 1994
  • E.Klier: Optika. Univerzita Karlova Praha 1978

Teaching methods - Czech
Last update: prof. RNDr. Marek Procházka, Ph.D. (25.09.2020)

Výuka v ZS 2020/21 začne v rozvrhovaném čase online, interaktivním způsobem (=prezenčně) za využití videokonferenčních nástrojů (Google Meet, MS Teams aj.). Podrobnejsi informace zasleme zapsanym studentum e-mailem.

Requirements to the exam - Czech
Last update: prof. RNDr. Marek Procházka, Ph.D. (17.10.2017)

Zkouška je ústní. Tři otázky: jedna z optiky, jedna z elektřiny a jedna z magnetismu. Je potřeba prokázat znalosti ze všech tří částí.

Syllabus -
Last update: prof. RNDr. Marek Procházka, Ph.D. (02.10.2020)
1. The Electrostatic Field
Basic properties of electric charge, electrostatic field; Coulomb's and Gauss's laws in integral and differential form; potential, electric dipoles, Poisson's and Laplace's equations; conductors in an electrostatic field; capacitance, field in a parallel plate capacitor; energy stored in a capacitor.

2. The Electric Field in a Dielectric
Electric polarization and displacement; parallel plate capacitor with a dielectric; Clausius-Mossotti formula.

3. Electric Current
Electric current, current density; Ohm's law; conductivity, drift velocity, mobility; temperature dependence of the conductivity of metals and semiconductors. Direct current circuits; electromotive force; Kirchhoff's rules, electric current power.

4. The Magnetic Field
Stationary magnetic field; the Lorentz force, Biot-Savart and Ampere's law. Magnetic flux. The field due to a long, straight wire; the field of a circular loop; a long solenoid; toroid. Magnetic dipole.

5. A Charged Particle in a Uniform Magnetic Field
The motion of charged particles in uniform magnetic fields. Cyclotron frequency, the Hall effect, a mass spectrometer. A current loop in uniform and non-uniform magnetic fields. The potential energy of a loop in a magnetic field.

6. The Magnetic Field Inside the Material
The Ampere's current loops, vectors B,M,H; Ampere's law for magnetic field intensity H. Magnetic properties of matter: diamagnetic, paramagnetic, ferro- and antiferromagnetic materials, superconductors; the magnetic field energy.

7. Electromagnetic Induction
Electromagnetic induction, Faraday's law, Lenz's law; relation between the Lorentz force and electromagnetic induction. Self-inductance and mutual inductance, self-inductance of a long solenoid.

8. Alternating Current Circuits
Transient phenomena in LR, CR, series and parallel RLC circuits; heavily damped, critically damped and lightly damped circuits, natural angular frequency. Forced oscillations in a series RLC circuit; resonance; quality factor. Phasor diagrams in the complex plane. Power in A.C. circuits; power factor.

9. Maxwell's Equations
Maxwell's equations in integral and differential form; boundary conditions.

10. Electromagnetic Waves
Wave equation in free space. Undamped homogeneous plane monochromatic wave; spherical wave. Polarization. Energy density, energy flow, the Poynting vector, intensity of the radiation.

11. Interference
Interference of a two monochromatic waves; Young's double-slit experiment; Michelson interferometer. Interference on a thin dielectric film; Fabry-Perot interferometer; interference fringers.

12. Diffraction
Diffraction of the radiation. Fresnel diffraction, Fresnel zones. Fraunhofer diffraction. Consequences for optical systems. Fraunhofer diffraction from a slit, interference on a system of slits. The diffraction grating in transmittance and reflectance; monochromator. Theoretical limit for spectral resolution.

13. Geometrical Optics
Plane wave on a boundary of two isotropic dielectrics; reflection and refraction of the wave. Fresnel's formulae, graphic illustration; Brewster's angle; polarization by reflection; total reflection.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html