SubjectsSubjects(version: 945)
Course, academic year 2017/2018
   Login via CAS
Physics V (Optics) - NUFZ005
Title: Fyzika V (optika)
Guaranteed by: Department of Physics Education (32-KDF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015 to 2021
Semester: winter
E-Credits: 8
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Helena Štěpánková, CSc.
doc. RNDr. Miroslav Kučera, CSc.
Annotation -
Last update: T_KFNT (02.01.2008)
An integrated teaching - a combination of lectures and seminars. Course of the electricity and magnetism for teachers education for secondary schools, lower grade. Applied to teachers education, 2nd year UMF/SŠ
Aim of the course -
Last update: T_KFNT (11.04.2008)

Course of the electricity and magnetism for teachers

education for secondary schools, lower grade.

Literature - Czech
Last update: T_KFNT (02.01.2008)

Halliday D., Resnick R., Walker J.: Fyzika. český překlad VUTIM Brno a Prometheus Praha, 2001

Štrba A.: Optika (Všeobecná fyzika 3), Alfa a SNTL, Bratislava a Praha 1979

Klier E.: Optika, Universita Karlova, Praha 1980 (skripta)

Fuka, Havelka, Optika a atomová fyzika - I Optika, SPN, Praha 1961

Beiser, Úvod do moderní fyziky, Academia, Praha 1975

Kolovrat, Příklady z optiky, SPN, Praha 1979

Doplňková literatura:

Klimeš, Kracík a Ženíšek, Základy fyziky II, Academia, Praha 1972

Vrba, Moderní aspekty klasické fyzikální optiky, Academia, Praha 1974

Peřina, Teorie koherence (popularní přednášky o fyzice), SNTL, Praha 1975

Born a Wolf, Principles of Optics, Pergamon Press, Oxford 1965 (3. vyd.)

Saleh a Teich, Fundamentals of Photonics, John Wiley and Sons, New York 1991; Základy fotoniky, Matfyzpress, Praha 1994

Zeman a kol., Sbírka řešených příkladů z fyziky pro pedagogické fakulty, SPN, Praha 1971

Hajko, Fyzika v příkladech, SNTL, Praha 1976

Halpern, 3000 solved problems in Physics, McGraw-Hill, New York 1988 (optika: kap. 34-36, relativita: kap. 37) Academia, Praha 1972

Syllabus -
Last update: T_KFNT (02.01.2008)
1. Introduction

  • Subject and parts of optics. History of approaches to the nature of light. Light velocity measurements. Fermat's principle, optical path, ray. Huygens and Huygens-Fresnel principle, wavefront.

2. Wave and electromagnetic optics

  • Maxwell equations in free space, wave equation. Characteristics of radiation, spatial density of electromagnetic energy, energy flow density, Poynting vector, radiation pressure, instantaneous and time-averaged values.
  • Wave: electromagnetic; plane, spherical, cylindrical; monochromatic, harmonics. Radiation of oscillating electric dipole. Propagation of waves. Wavevector, frequency, wavelength, phase, phase velocity. Spectral range of optical radiation. Polarisation (linear, circular, elliptical).
  • Superposition of waves, path/phase delay, temporal coherence. Standing wave.
  • Interference - constructive/destructive, Young experiment, spatial coherence, interference on a thin layer, antireflection layer, interferometers (Fabry-Perot, Michelson). Holography.
  • Diffraction - Fraunhofer/Fresnel diffraction, diffraction patterns for a slit, circular aperture, circular target, edge. Fresnel zones. Diffraction grating, resolution, Rayleigh criterion.
  • Optical media - classification.
  • Refractive index. Dispersion of refractive index, phase/group velocity. Absorption, Lambert-Beer law.
  • Optical anisotropy, birefringence. Polarisers, wave retarders (quarter-wave, half-wave plate). Malus' law.
  • Dichroism. Polaroid. Optical activity.
  • Light scattering, elastic and non-elastic.
  • Reflection and refraction at a planar interface, angle and plane of incidence/reflection/refraction. Snell's law. Fresnel formulae, reflectance, transmittance, total reflection, critical angle, Brewster angle. Polarised light using reflection and refraction

3. Geometrical (ray) optics

  • Axioms.
  • Basic optical elements. Prisms: reflective, refractive, dispersive. Lenses. Mirrors.
  • Colinear transformation. Cardinal points and planes of an imaging system: focal points and planes, principal points and planes, nodal points, focal lengths. Imaging formulae. Real/virtual image. Image magnification. Centred optical systems converging, diverging, telescopic.
  • Optical imaging using paraxial rays. Spherical interface. Lenses: converging, diverging, thin/thick; mirror: plane, concave, convex.
  • Aberrations and their compensations: spherical aberration, coma, field curvature, distorsion, astigmatism, chromatic aberration.
  • Optical instruments: telescope, magnifying glass, microscope. Objective, eyepiece, magnification, resolution power. Camera. Spectrometer. Optical waveguide. * 4. Basics of quantum optics
  • Blackbody radiation, Planck's law, Wien's law, Stephan-Boltzmann law. Fotoeffect, work function. Quantum characteristics of radiation, photon.
  • Spontaneous and stimulated emission. Optical resonator. Population inversion. Lasers.

5. Human and light

  • Human eye: anatomy, eye as an optical system. Perception of light, colours. Additive/ subtractive mixing of colours. - Accommodation, near point. Glasses. Adaptation, Purkyne's effect.

6. Photometry

  • Basic quantities in photometry and radiometry. Sources and detectors.

7. Special theory of relativity

  • Postulates. Inertial systems. Michelson-Morley experiment. Galileo transformation, Lorentz transformation. Space-time. Time dilatation. Length contraction. Relativity of simultaneity. Transformation of velocity. Doppler effect.
  • Relativistic mass and momentum, rest mass. Total energy, kinetic energy. Equation of motion. Equivalence of mass and energy.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html