SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Fourier-analytic techniques in function spaces - NMMA801
Title: Fourierovské techniky v prostorech funkcí
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016 to 2016
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HS]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: Winfried Sickel
doc. RNDr. Dr. rer. nat. Jan Vybíral, Ph.D.
Class: DS, matematická analýza
DS, vědecko - technické výpočty
M Mgr. MA > Volitelné
M Mgr. NVM > Volitelné
Classification: Mathematics > Differential Equations, Potential Theory, Functional Analysis, Numerical Analysis
Annotation -
Last update: T_KMA (16.04.2015)
Fourier analysis plays an important role in numerics, analysis of partial differential equations and function spaces. We will introduce the Fourier-analytic definition of spaces of Besov and Lizorkin-Triebel type, give their basic properties, equivalent definitions based on differences, and their decomposition properties in terms of atoms and wavelets. Applications of these techniques on traces will be considered as well. The lecture will be part of Erasmus+ staff mobility and will be given in the week of September 28 till October 2, 2015 by Prof. Winfried Sickel from Jena, Germany.
Literature
Last update: doc. Mgr. Petr Kaplický, Ph.D. (09.06.2015)

T. Runst and W. Sickel: Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations. de Gruyter, Berlin 1996

H. Triebel, Theory of function spaces, Monographs in Mathematics, Birkhäuser, Basel, 1983.

V. S. Rychkov, On a theorem of Bui, Paluszyński, and Taibleson, Tr. Mat. Inst. Steklova, 1999

Syllabus -
Last update: T_KMA (16.04.2015)

1. Fourier-analytic definition of spaces of Besov and Lizorkin-Triebel type

2. Basic properties (completeness, embeddings, Peetre maximal operator)

3. Equivalent definitions based on differences

4. Decomposition techniques (atoms, wavelets)

5. Applications on the trace problem.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html