SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Ordinary Differential Equations 2 - NMMA407
Title: Obyčejné diferenciální rovnice 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016 to 2016
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Dalibor Pražák, Ph.D.
Class: M Mgr. MA
M Mgr. MA > Povinné
M Mgr. MOD
M Mgr. MOD > Povinně volitelné
Classification: Mathematics > Differential Equations, Potential Theory
Incompatibility : NDIR021
Interchangeability : NDIR021
Is interchangeable with: NDIR021
Annotation -
Last update: T_KMA (02.05.2013)
Mandatory course for the master study branch Mathematical analysis. Recommended for the first year of master studies. Devoted to advanced topics in theory of ordinary differential equations. Content: dynamical systems; Poincaré-Bendixson theory; Carathéodory theory; optimal control, Pontryagin maximum principle; bifurcation; stable, unstable and central manifolds.
Literature -
Last update: T_KMA (02.05.2013)

Kurzweil, Jaroslav Ordinary differential equations. Introduction to the theory of ordinary differential equations in the real domain. Translated from the Czech by Michal Basch. Studies in Applied Mechanics, 13. Elsevier Scientific Publishing Co., Amsterdam, 1986.

I.I. Vrabie: Differential equations: an introduction to basic concepts, results, and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.

H. Amann: Ordinary differential equations, an introduction to nonlinear analysis, de Gruyter Studies in Mathematics 13,

Walter de Gruyter & Co., Berlin, 1990.

J. Hale, H. Kocak: Dynamics and Bifurcations. Texts in Applied Mathematics 3, Springer, New York, 1991.

Syllabus -
Last update: T_KMA (16.09.2013)

1. Dynamical system. Orbit, stationary point, invariant set. Alpha- and omega-limit sets and their properties. La Salle invariance principle. Conjugate dynamical systems. Lemma on rectifications. Poincaré-Bendixson theory in the plane. Bendixson-Dulac criterion of non-existence of periodic solutions.

2. Carathéodory theory - notion of an absolutely continuous solution, local existence and uniqueness.

3. Optimal control theory.

4. Bifurcations. Basic types of bifurcations. Sufficient conditions for existence of bifurcations. Hopf bifurcation.

5. Stable, unstable and central manifolds. Invariance principle and its reformulations. Existence of the central manifold. Approximation of the central manifold. Reduced stability principle. Hartman-Grobman theorem.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html