SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Introduction to Partial Differential Equations - NMMA334
Title: Úvod do parciálních diferenciálních rovnic
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2012 to 2016
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/4, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. Mgr. Petr Knobloch, Dr., DSc.
Class: M Bc. OM
M Bc. OM > Zaměření MA
M Bc. OM > Zaměření NUMMOD
M Bc. OM > Povinně volitelné
Classification: Mathematics > Differential Equations, Potential Theory
Is interchangeable with: NNUM001
In complex pre-requisite: NMMA349, NMNM349
Annotation -
Last update: G_M (16.05.2012)
An introductory course in partial differential equations for bachelor's program in General Mathematics. Recommended for specializations Mathematical Analysis and Mathematical Modelling and Numerical Analysis.
Literature - Czech
Last update: T_KMA (27.09.2012)
Základní studijní literatura a studijní pomůcky

L. C. Evans: Partial Differential Equations, AMS 2010

K. W. Morton, D. F. Mayers: Numerical solution of partial differential equations, 2nd ed., Cambridge University Press, Cambridge, 2005

J. C. Strikwerda: Finite difference schemes and partial differential equations, 2nd ed., SIAM, Philadelphia, 2004

A. Quarteroni, A. Valli: Numerical Approximation of Partial Differential Equations, Springer, 2008.

Doporučená studijní literatura a studijní pomůcky

O. John, J. Nečas: Rovnice matematické fyziky, SPN 1972

M. Feistauer: Diskrétní metody řešení diferenciálních rovnic. Skripta, SPN, Praha, l98l

S. J. Farlow: PDE for Scientists and Engineers, Dover, 1993

F. Sauvigny: Partial Differential Equations 1, Foundations and Integral Representations, Springer, 2006

Syllabus -
Last update: doc. Mgr. Petr Knobloch, Dr., DSc. (16.06.2015)

Basic examples of PDE's and their numerical solution by the finite difference method. Cauchy problem for a quasilinear PDE of the first order, transport equation, characteristics.

Von Neumann stability analysis of numerical schemes for Cauchy problems. Numerical solution of transport equation: CFL condition, upwinding, maximum principle, truncation error and approximation error, dissipation and dispersion.

Real analytic functions, Cauchy-Kowalevska Theorem, characteristic surfaces, classification of semilinear PDE's of the second order, transformation to canonical form.

Heat equation (fundamental solution, Cauchy problem, problem in bounded domain), wave equation (fundamental solution, Cauchy problem, energy methods).

Numerical solution of the mixed problem for heat equation: implicit and explicit schemes, theta-scheme, Fourier error analysis, maximum principle and convergence.

Relation between consistence, convergence and stability: general scheme for equations of the first order in time, Lax equivalence theorem.

Elliptic equations of the second order: fundamental solution of Laplace equation, Green's representation formula, Dirichlet problem for Laplace equation, mean value theorems, maximum principles.

Numerical solution of elliptic equations of the second order: approximation of general diffusion equation, derivation of schemes in irregular nodes, maximum principle and convergence.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html