SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Gravity Field and Shape of the Earth - NGEO017
Title: Tíhové pole a tvar Země
Guaranteed by: Department of Geophysics (32-KG)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016 to 2017
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Ondřej Čadek, CSc.
Classification: Physics > Geophysics
Annotation -
Last update: prof. RNDr. František Gallovič, Ph.D. (10.01.2019)
Historical review of the study of the figure of the Earth. Motions of the Earth, time variations of the Earth's rotation. Earth tides. Expansion of the external gravity potential into a series of spherical harmonics. Geoid and spheroid. Normal gravity, Clairaut's theorem. Distance between the geoid and spheroid, Bruns' theorem, Stokes' theorem. Isostasy. Gravity measurements and their reductions. Satellite methods of studying the gravitational field, perturbations of orbits. The figure of the real Earth's surface, principles of Molodenskii's method, satellite methods.
Aim of the course -
Last update: prof. RNDr. František Gallovič, Ph.D. (10.01.2019)

Following lectures on particle mechanics and rigid-body mechanics, this lecture deals with analogous mechanical phenomena on the Earth, in particular with motions of the Earth, theory of the gravity field and figure of the Earth.

Literature - Czech
Last update: prof. RNDr. František Gallovič, Ph.D. (10.01.2019)
  • G.D. Garland: The Earth's Shape and Gravity. Pergamon Press, Oxford 1965. (Ruský překlad: Mir, Moskva 1967).
  • M. Pick, J. Pícha, V. Vyskočil: Úvod ke studiu tíhového pole Země. Academia, Praha 1973.
  • M. Burša, K. Pěč: Tíhové pole a dynamika Země. Academia, Praha 1988.
  • O. Novotný: Motions, Gravity Field and Figure of the Earth. Lecture notes. UFBA, Salvador, Bahia 1998.
  • F.D. Stacey: Physics of the Earth. J. Wiley, New York 1969. (Ruský překlad: Mir, Moskva 1972).
  • G. Arfken: Mathematical Methods for Physicists. Academic Press, New York 1970.
  • W.A. Heiskanen, F.A. Vening Meinesz: The Earth and Its Gravity Field. McGraw Hill, New York 1958.
  • P. Melchior: The Tides of the Planet Earth. Pergamon Press, Oxford 1983.
  • I. Fischer: The figure of the Earth - changes in concepts. Geophysical Surveys 2 (1975), 3-54.
  • M. Pick, R. Válek: Gravimetrické aparatury. SPN, Praha 1977 (skripta).
  • M. Burša: Družicové metody studia gravitačních polí a tvaru nebeských těles. SPN, Praha 1979 (skripta).
  • N.P. Grušinskij: Teorija figury Zemli. Nauka, Moskva 1976.
  • N.P. Grušinskij: Osnovy gravimetrii. Nauka, Moskva 1983.
  • M. Burša, G. Karský, J. Kostelecký: Dynamika umělých družic v tíhovém poli Země. Academia, Praha 1993.
  • M. Burša, J. Kostelecký: Kosmická geodezie a kosmická geodynamika. Ministerstvo obrany - GŠ AČR, Praha 1994.

Teaching methods -
Last update: doc. RNDr. Marie Běhounková, Ph.D. (12.05.2022)

Lecture + exercises

Syllabus -
Last update: prof. RNDr. František Gallovič, Ph.D. (10.01.2019)
1. Historical review of investigations of the figure of the Earth

Ancient mythical notions. Pythagoras' spherical Earth. The size of the spherical Earth; Eratosthenes. The ellipsoidal Earth; consequences of Newton's gravitational theory; the French arc measurements; the expeditions to Peru and Lapland. Importance of the arc measurements for geodesy, physics and metrology. The acknowledgement of the irregular geoid as the figure of the Earth by Gauss and Bessel. Geometric and physical geodesy. Satellite geodesy; Buchar's determination of the Earth's flattening. Recent reference ellipsoids.

2. Motions of the Earth

Motions of the Galaxy. Motions of the Solar System in the Galaxy. Revolution of the Earth round the Sun. Earth's rotation and its changes. Dynamics of the Earth-Moon system. The influence of rotation on mechanical processes on the Earth; equations of motion in a non-inertial reference frame; impulse momentum theorem, angular momentum theorem; equations of motion of a rigid body; Liouville's equations. Precession and nutation; dynamical flattening of the Earth. Free nutation; Euler's and Chandler's periods.

3. Earth tides

Tidal effects on a rigid Earth; derivation of the tidal potential; its properties. Tidal effects on an elastic Earth; Love numbers and their importance for determining the elastic properties of the Earth.

4. Gravity field and gravity potential of the Earth

Basic notions; gravitational and gravity accelerations. Gravity measurements; absolute and relative measurements; pendulum and free-fall observations, gravimeters. Expansion of the external gravity potential into a series of spherical harmonics. Equipotential surfaces; geoid and spheroid. Normal gravity; Clairaut's theorem. Distance between the geoid and spheroid: Bruns's theorem, fundamental equation of physical geodesy, Stokes's theorem. Vening Meinesz formulae for the deflection of the vertical. Maps of the geoid.

5. Isostasy

Historical development of the idea of isostasy. Pratt-Hayford and Airy-Heiskanen isostatic systems. Vening Meinesz regional isostatic system.

6. Gravity reductions and gravity anomalies

Free-air reduction; Bouguer reduction. Isostatic reductions. Applications of various gravity anomalies.

7. Satellite methods of studying the gravitational field

Kepler's problem. Solution to the satellite motion in a general potential field by means of the Hamilton-Jacobi equation. Lagrange's equations for perturbations of the orbital elements. Perturbations of orbits due to the Earth's flattening; other perturbations. Results of the satellite studies of the Earth's gravitational field; Stokes' constants. Gravitational field of the Moon; mascons.

8. The figure of the real Earth's surface

Heights above sea level: orthometric, normal and dynamic heights. Molodenskii's method of determining the figure of the Earth's surface. Satellite methods; global positioning system (GPS).

Basic references:

  • G.D. Garland: The Earth's Shape and Gravity. Pergamon Press, Oxford 1965.
  • M. Pick, J. Pícha, V. Vyskočil: Theory of the Earth's Gravity Field. Academia, Prague, and Elsevier Scientific Publishing Company, Amsterdam 1973.
  • M. Burša, K. Pěč: Gravity Field and Dynamics of the Earth. Springer-Verlag, Berlin 1993.
  • O. Novotný: Motions, Gravity Field and Figure of the Earth. Lecture notes. UFBA, Salvador, Bahia 1998.
  • F.D. Stacey: Physics of the Earth. J. Wiley, New York 1969.

Further references:

  • G. Arfken: Mathematical Methods for Physicists. Academic Press, New York 1970.
  • W.A. Heiskanen, F.A. Vening Meinesz: The Earth and Its Gravity Field. McGraw Hill, New York 1958.
  • P. Melchior: The Tides of the Planet Earth. Pergamon Press, Oxford 1983.
  • I. Fischer: The figure of the Earth - changes in concepts. Geophysical Surveys 2 (1975), 3-54.
  • M. Burša, J. Kostelecký: Space Geodesy and Space Geodynamics. Ministty of Defence of the Czech Republic, Prague 1999.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html