SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Physics III - Electricity and Magnetism - NEVF703
Title: Fyzika III - Elektřina a magnetismus
Guaranteed by: Department of Surface and Plasma Science (32-KFPP)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015 to 2021
Semester: both
E-Credits: 1
Hours per week, examination: 1/1, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: you can enroll for the course in winter and in summer semester
Guarantor: doc. RNDr. Jiří Pavlů, Ph.D.
prof. RNDr. Zdeněk Němeček, DrSc.
prof. RNDr. Jana Šafránková, DrSc.
Annotation -
Last update: G_F (29.05.2006)
The course provides an introduction to the theory of the electromagnetic field. It is oriented on the fundamental experimental findings that lead to the gradual postulation of Maxwell equations. The final part of the course is devoted to application of gained knowledge to the solution of several particular problems as motion of charged particles in electromagnetic fields of different configuration or electric transport phenomena.
Literature - Czech
Last update: T_KEVF (06.05.2009)

/ 1/ B. Sedlák, I. Štoll: Elektřina a magnetismus, Academia , Vydavatelství Karolinum Praha 1993

/ 2/ B. Sedlák, R. Bakule: Elektřina a magnetismus (skriptum), SPN Praha 1986.

/ 3/ R. Bakule a kol.: Příklady z elektřiny a magnetismu (skriptum), SPN Praha 1991.

/ 4/ J. Brož a kol.: Základy fyzikálních měření I. SPN Praha 1983.

/ 5/ I. Štoll, B. Sedlák: Přehled vektorové analýzy ( Doplňkový text OZVF, sv.3.) MFF UK Praha 1991.

/ 6/ D. Halliday, R. Resnick, J. Walker, Fundamentals of physics, Wiley New York, 2001.

(Český překlad vyd. Vutium, Prometheus, Brno, Praha 2000)

/ 7/ P. Čičmanec: Elektřina a magnetismus, Alfa, Bratislava 1979.

/ 8/ V. Hajko, J. Daniel-Szabó: Všeobecná fyzika, UPJŠ Košice 1974.

/ 9/ V. Hajko a kol.: Fyzika v experimentoch, Veda, Bratislava 1988.

/10/ J. Brož, V. Roskovec: Základní fyzikální konstanty, SPN Praha 1987.

/11/ J. Kvasnica: Teorie elektromagnetického pole, Academia Praha 1985.

/12/ A. Stratton: Teorie elektromagnetického pole, SNTL Praha 1961.

/13/ E. M. Purcell: Electricity and Magnetismus (Berkley Physics Course), vol. 2, McGraw-Hill New York 1965 (ruský překlad Nauka Moskva 1971).

/14/ R. P. Feynman, R. B. Leighton, M. Sands: The Feynman Lectures on Physics, vol. 1,2, Addison- Wesley, Reading 1964 (český překlad Fragment Havlíčkův Brod 2000).

/15/ L. D. Landau, E. M. Lifšic: Teorija polja, Nauka Moskva 1967.

/16/ K. Rektorys: Přehled užité matematiky, SNTL Praha 1963.

/17/ A. Angot: Užitá matematika pro elektrotechnické inženýry, SNTL Praha 1960.

/18/ Ch. Kittel: Úvod do fyziky pevných látek, Academia Praha 1985.

Syllabus -
Last update: T_KEVF (06.05.2009)
1. Electrostatics.
Basic concepts and laws of electrostatic field in vacuum: Electric charge and its properties.Point charge, charge density. Coulomb's law. Strength and potential of electrostatic field. Gauss's law, Poisson's and Laplace's equations. Typical examples.

Electrostatic field of conductors: Fundamental experiments, electrostatic induction. Capacity, capacitor. Applications.

Electrostatic field in dielectrics: Polarization of dielectric, bound charges. Gauss's law in dielectrics, vector of electric displacement. Material relations, electric susceptibility and permittivity.

Energy and forces in electrostatic field: Interaction energy of configuration of point charges.

Energy of configuration of charged conductors. Energy density of electrostatic field.

Forces on electric dipole.

2. Electric current and stationary electric field.
Stationary electric field. Ohm's law, electric resistance and conductivity. Stationary electric circuit. Electromotive force, Kirchhoff's rules. Energy and power in stationary circuits, Joule's law.

3. Stationary magnetic field.
Vector of magnetic field (induction) and its properties, Ampére's law of magnetic field.

Vector potential, Biot-Savart's law. Magnetic field in matter. Magnetic polarization (magnetization). Ampére's law of magnetic field in matter, magnetising field. Material relations, magnetic susceptibility and permeability. Magnetic circuit, magnetostatic field. Applications.

4. Quasistationary electric and magnetic fields.
Faraday's law of electromagnetic induction. Mutual inductance, self-inductance. Generic properties of quasistationary field. Quasistationary circuit, Kirchhoff's rules. Alternating current generation, alternating currents and circuits. Energy and forces in magnetic field. Energy density of magnetic field.

5. Dielectric and magnetic properties of matter.
Microscopic electric fields in matter. Susceptibility and permittivity of non-polar and polar substances. Clausius - Mosotti's equation. Diamagnetism of atoms and molecules.

Paramagnetism of atoms. Paramagnetism of metals. Types of magnetic alignment, physical principles. Spontaneous magnetisation, permeability of ferromagnetic materials. Molecular field. Curie-Weiss' law.

6. Electric transport phenomena.
Validity of Ohm's law, mobility of charge carriers. Conductivity of metals, Drude's theory, Franz-Wiedemann's law. Conductivity of semiconductors, p-n transition, transistor. Hall's effect. Thermoelectric phenomena. Electron emission. Saturated and unsaturated emission current, Langmuir's law. Specific and molar conductivity of liquids. Electrolysis, Faraday's laws. Galvanic cells. Conductivity of gases, discharge in gas, Paschen's law. Franck-Hertz's experiment.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html