SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Introduction to computational physics - NEVF102
Title: Úvod do počítačové fyziky
Guaranteed by: Department of Surface and Plasma Science (32-KFPP)
Faculty: Faculty of Mathematics and Physics
Actual: from 2009 to 2016
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Rudolf Hrach, DrSc.
doc. RNDr. Radek Plašil, Ph.D.
Annotation -
Last update: T_KEVF (07.05.2005)
Basic numerical methods - approximation, numerical integration and differentiation, solution of linear algebraic equations, solution of transcendent equations, solution of ordinary differential equations, solution of partial differential equations. Main directions of classical computational physics. Computer modelling. Application of computer modelling and other methods of computational physics in physics.
Literature - Czech
Last update: T_KEVF (07.05.2004)

Vicher M.: Numerická matematika, skripta, PF UJEP, Ústí nad Labem 2003.

Hrach R.: Numerické metody ve fyzikální elektronice, skripta, SPN, Praha 1981.

Hrach R.: Počítačová fyzika I, II, PF UJEP, Ústí nad Labem 2003.

Syllabus -
Last update: T_KEVF (07.05.2005)
1. Basic numerical methods
Numerical mathematics - representation of numbers, accuracy, errors. Approximation - interpolation, least squares approximation, spline functions. Numerical integration and differentiation - classical formulae for equally spaced abscissas, Gaussian quadrature. Solution of linear algebraic equations - Gaussian elimination, Gauss-Jordan elimination, iterative methods. Root finding and solution of nonlinear sets of equations. Integration of ordinary differential equations - Euler method and its modifications, Runge-Kutta methods, predictor-corrector methods. Solution of partial differential equations - difference equations, relaxation method, super-relaxation method.

2. Basics of classical computational physics
Main directions of classical computational physics. Computer modelling - Monte Carlo method, molecular dynamics method, fluid modelling, hybrid modelling. Application of computational physics in plasma physics and thin film physics.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html