SubjectsSubjects(version: 970)
Course, academic year 2015/2016
   Login via CAS
Projective geometry II - NMUG303
Title: Projektivní geometrie II
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014 to 2016
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: Mgr. Lukáš Krump, Ph.D.
prof. RNDr. Adolf Karger, DrSc.
Teacher(s): Mgr. Lukáš Krump, Ph.D.
Class: M Bc. DGZV
M Bc. DGZV > Povinné
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Incompatibility : NDGE008
Interchangeability : NDGE008
Is incompatible with: NDGE008
Is interchangeable with: NDGE008
Annotation - Czech
Projektivní rozšíření afinního prostoru, projektivní prostor, homogenní souřadnice. Kolineace. Kvadriky, jejich vlastnosti a klasifikace.
Last update: G_M (22.05.2012)
Literature -
  • M. Sekanina a kol., Geometrie I, II, Státní pedagogické nakladatelství Praha 1986, 1988.
  • J. Janyška, A. Sekaninová; Analytická teorie kuželoseček a kvadrik, Masarykova univerzita v Brně, 2001
  • M. Lávička: Geometrie 2; pomocný učební text - ZČU Plzeň, 2004, http://home.zcu.cz/~lavicka/subjects/G2/texty/G2_text.pdf

Last update: T_KDM (14.04.2014)
Syllabus -

1. Basic properties of projective space. Definition of a projective space over R and C, linear objects, duality, corelation.

2. Classifications of quadrics in a projective space. Definition of a quadric in projective space, inertia theorem, nullity space of a quadric, classification of quadrics especially for n = 2, 3.

3. Desargues, Pappos and Pascal theorem.

4. Projective transformations and their real Jordan forms. Theorems on dimensions

and on maximal linear subspaces on a quadric, polar properties, vertex of a quadric, general projective and affine classification of quadrics with application to n=2,3. Tangent cone and base of a quadric.

Last update: T_KDM (17.04.2014)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html