SubjectsSubjects(version: 970)
Course, academic year 2015/2016
   Login via CAS
Mathematics for Physicists II - NMAF062
Title: Matematika pro fyziky II
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015 to 2015
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:3/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. Mgr. Milan Pokorný, Ph.D., DSc.
Teacher(s): Mgr. Libor Křižka, Ph.D.
Mgr. Martin Lanzendörfer, Ph.D.
prof. Mgr. Milan Pokorný, Ph.D., DSc.
Class: Fyzika
Classification: Physics > Mathematics for Physicists
Interchangeability : NMAF043
Is interchangeable with: NMAF043
In complex pre-requisite: NMAA121, NRFA106, NRFA175
Annotation -
Basic mathematics course for 2nd year students of physics. Prerequisities: Mathematics for physicists I, NMAF061.
Last update: T_KMA (13.05.2008)
Aim of the course -

Basic mathematics course for 2nd year students of physics. Prerequisities: Mathematics for physicists II.

Last update: T_KMA (13.05.2008)
Literature - Czech
  • Kopáček, J.: Matematická analýza pro fyziky IV. (skripta)
  • Kopáček J.: Příklady z matematiky pro fyziky IV. (skripta)
  • Videozáznamy přednášek
Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (18.02.2020)
Teaching methods - Czech

přednáška + cvičení

Last update: T_KMA (13.05.2008)
Syllabus -

1. Fourier series

Trigonometric polynomials and series. Riemann-Lebesgue lemma, Riemann theorem on localization, Dirichlet kernel, pointwise properties of Fourier series, Fourier series in Hilbert spaces, Bessel inequality and Parseval equality. Orthogonal systems of polynomials (Legendre, Hermite, Chebyshev), eigenfunctions of differential operators.

2. Introduction to the complex analysis:

Holomorfic function, Cauchy-Riemann equations, line integral in the complex domain, primitive function. Cauchy theorem, Cauchy formula, Liouville theorem. Taylor series, function holomorfic between circular contours, isolated singularities, Laurent series. Residue and Residue theorem.

3. Fourier transform of functions

Definition and basic properties. Schwartz space, L1 and L2 theory, inversion theorems, convolution, application to ODE and PDE.

Last update: T_KMA (13.05.2008)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html