Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (18.02.2020)
Teaching methods - Czech
přednáška + cvičení
Last update: T_KMA (13.05.2008)
Syllabus -
1. Fourier series
Trigonometric polynomials and series. Riemann-Lebesgue lemma, Riemann theorem on localization, Dirichlet kernel, pointwise properties of Fourier series, Fourier series in Hilbert spaces, Bessel inequality and Parseval equality. Orthogonal systems of polynomials (Legendre, Hermite, Chebyshev), eigenfunctions of differential operators.
2. Introduction to the complex analysis:
Holomorfic function, Cauchy-Riemann equations, line integral in the complex domain, primitive function. Cauchy theorem, Cauchy formula, Liouville theorem. Taylor series, function holomorfic between circular contours, isolated singularities, Laurent series. Residue and Residue theorem.
3. Fourier transform of functions
Definition and basic properties. Schwartz space, L1 and L2 theory, inversion theorems, convolution, application to ODE and PDE.
Last update: T_KMA (13.05.2008)
1. Fourierovy řady
Fourierovy koeficienty a Fourierova trigonometrická řada. Riemann-Lebesgueovo lemma a jeho důsledky. Riemannova věta o lokalizaci. Dirichletovo integrální jádro. Fourierovy řady pro dostatečně hladké funkce. Besselova nerovnost a Parsevalova rovnost pro L2 funkce. Derivování a integrování Fourierových řad člen po členu. Abstraktní Fourierovy řady: Hilbertův prostor, ortogonální systém, Fourierovy řady v Hilbertových prostorech, separabilní Hilbertův prostor, ekvivalence separability a existence úplné ortonormální báze, abstraktní Besselova nerovnost a Parsevalova rovnost, souvislost s úplností OG systému. Různé ortogonální systémy, aplikace: prostory s vahami, souvislost ortogonálních systémů s vlastními funkcemi diferenciálních operátorů. Ortogonální systémy polynomů: Legendreovy, Laguerrovy, Hermiteovy, Čebyševovy apod.
2. Komplexní analýza
Holomorfní funkce, komplexní derivace, Cauchy-Riemannovy podmínky.Komplexní křivka a křivkový integrál, délka křivky, definice primitivní funkce. Výpočet křivkového integrálu pomocí primitivní funkce, nezávislost integrálu na cestě, jednoduše souvislá oblast. Cauchyova věta a Cauchyův vzorec. Taylorovy a Laurentovy řady. Reziduová věta a její použití k výpočtům. Liouvilleova věta. Věta o jednoznačnosti.
3. Fourierova transformace funkcí
Fourierova transformace pro funkce z L1(Rn), Vztah F.T. a derivace. Konvoluce, F.T. konvoluce. Věta o inverzi pro Fourierovu transformaci: Schwartzův prostor S (prostor rychle klesajících funkcí) a jeho vlastnosti, věta o inverzi pro fce z S a L1. Rozšíření F.T. do prostoru L2. Parsevalova rovnost, věta o inverzi pro funkce z L2. Základní použití F.T. pro řešení ODR a PDR.
Last update: Valentová Helena, doc. RNDr., Ph.D. (05.01.2018)