SubjectsSubjects(version: 970)
Course, academic year 2014/2015
   Login via CAS
Mathematical Models in Biology - MS710P33
Title: Matematické modely v biologii
Guaranteed by: Institute of Applied Mathematics and Information Technologies (31-710)
Faculty: Faculty of Science
Actual: from 2014 to 2014
Semester: summer
E-Credits: 3
Examination process: summer s.:
Hours per week, examination: summer s.:1/1, Ex [HT]
Capacity: unlimited
Min. number of students: 6
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Note: enabled for web enrollment
Guarantor: RNDr. Václav Kotvalt, CSc.
Opinion survey results   Examination dates   Schedule   
Annotation -
Applications of methods of mathematic analysis (ordinary differential equations) for modelling biological, physical and (bio)chemical processes.



Last update: Rubešová Jana, RNDr., Ph.D. (06.01.2003)
Literature - Czech

Václav Kotvalt: Základy matematiky pro biologické obory. - Skriptum UK Praha, 1997.

Kristína Smítalová, Štefan Šujan: Dynamické modely biologických spoločenstiev. - Veda Bratislava, 1989.

Tomáš Havránek a kol.: Matematika pro biologické a lékařské vědy. - Academia Praha, 1981.

James D. Murray: Mathematical Biology. - Springer-Verlag Berlin/Heidelberg, 1993.

Daniel Kaplan, Leon Glass: Understanding Nonlinear Dynamics. - Springer-Verlag Berlin/Heidelberg, 1995.

Huseyin Kocak: Differential and Difference Equations through Computer Experiments. - Springer-Verlag Berlin/Heidelberg, 1986.

James D. Murray: Mathematical Biology. - Springer-Verlag Berlin/Heidelberg, 1993.

Last update: Rubešová Jana, RNDr., Ph.D. (06.01.2003)
Requirements to the exam - Czech

zkouška ústní z probrané látky

Last update: Kotvalt Václav, RNDr., CSc. (17.04.2012)
Syllabus -

1. Ordinary differential equations of the first order: variables separable and linear equations, modelling of physical, (bio)chemical and biological processes - radioactive decay of elements, reaction kinetics (Michaelis-Menten model), population dynamics (logistic curve), etc.

2. Systems of differential equations: solving systems of linear equations (eigenvalues and eigenvectors, matrix in Jordan canonical form), steady state, periodic solution, stability, Poincaré-Bendixson theory for dymical systems in the plane.

3. Continuous models: interacting populations (predator-prey models), biochemical reactions (photosynthesis of Calvin cycle), etc.

4. Numerical methods: estimation of equation parameters (regression), solving systems of ordinary differential equations (Euler's and Runge-Kutta methods).

Last update: Rubešová Jana, RNDr., Ph.D. (26.04.2002)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html