|
|
|
||
Overview of both traditional and modern statistical methods with practical applications. Primer aim is to connect knowledge
across various fields and demonstrate the wide range of data-mining techniques by solving some real-world problems, using
multivariate statistical analysis or machine learning.
Last update: T_KPMS (25.04.2008)
|
|
||
Overview of both traditional and modern statistical methods withpractical applications. Primer aim is to connect knowledge acrossvarious fields and demonstrate the wide range of data-miningtechniques by solving some real-world problems, using multivariate statistical analysis or machine learning. Last update: G_M (29.05.2008)
|
|
||
Berka, P.: Dobývání znalostí z databází. Academia, 2003. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, 2001. Hebák, P., Hustopecký, J.: Vícerozměrné statistické metody s aplikacemi. SNTL-Alfa, 1987. Last update: T_KPMS (25.04.2008)
|
|
||
Seminar. Last update: G_M (28.05.2008)
|
|
||
1. Linear Regression (multicolinearity, correlated residuals, variable importance, interpretation) 2. Factor Analysis (interpretation, visualization) 3. Cluster Analysis (data preparation, overview of methods, description of segments) 4. Classification Algorithms (logistic regression, LDA, decision trees - CART, TreeNet, Random Forest, alternative methods) 5. Latent Classes 6. Correspondence Analysis (contingent tables, Pearson chi-square statistics, multidimensional tables) 7. Multivariate Scaling (problem description, perceptual maps, interpretation) 8. Databases (warehouse, data mart, ETL, OLAP, CRISP-DM) 9. Data Visualization (multivariate and categorical data, special chart types, rules of thumb) 10. Overview of various statistical packages
Case studies from marketing and telecommunication Other topics according connected to data-mining possible Last update: T_KPMS (23.05.2008)
|