SubjectsSubjects(version: 970)
Course, academic year 2012/2013
   Login via CAS
Non-Euclidean Geometry II - NDGE021
Title: Neeuklidovská geometrie II
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2008 to 2012
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: Mgr. Lukáš Krump, Ph.D.
doc. RNDr. Leo Boček, CSc.
Teacher(s): Mgr. Lukáš Krump, Ph.D.
Class: M Bc. DGZV
M Bc. DGZV > Povinné
M Bc. DGZV > 2. ročník
Classification: Mathematics > General Subjects
Annotation -
Axiomatic of geometry, non-Euclidean geometries, models of non-Euclidean geometries (Beltrami-Klein, Poincare), groups of transformations.
Last update: T_KDM (24.05.2004)
Aim of the course -

This course helps to obtain theoretical background for teaching mathematics at high school.

Last update: T_KDM (19.05.2008)
Literature -

1. Kutuzov, B.V.: Lobačevského geometrie a elementy základů geometrie, ČSAV, Praha, 1953

2. Trajnin, J.L.: Osnovanija geometrii, Moskva, 1961

3. Hlavatý, V.: Úvod do neeuklidovské geometrie, JČMF, Praha, 1949

4. Čech, E.: Základy analytické geometrie II., Praha, 1952

5. Boček, L. & Šedivý J.: Grupy geometrických zobrazení, SPN, Praha

6. Weblen, O. & Young, J.W.: Projective geometry I.II., Blaisdell P. C., New York, 1938

7. Gans, D.: An Introduction to Non-Euclidean Geometry, Academic Press, New York, 1973

8. Tuller, A.: Introduction to Geometries,

9. Springer, C.E.: Geometry and Analysis of Projective Spaces,

10. Wolfe, H.E.: Introduction to Non-Euclidean Geometry, Holt, Rinehart & Winston, Inc., New York, 1966

Last update: T_KDM (14.05.2008)
Teaching methods -

Lectures and exercises.

Last update: T_KDM (20.05.2008)
Syllabus -

Spherical geometry, excess of angles in spherical triangle, solution of spherical triangles.

Stereographic projection and circular inversion. Solutions of problems of Apollonios.

Axiomatisation of geometry, absolute geometry, the 5th postulate, mutual position of two lines in non-Euclidean geometry, defect of angles and area of triangle. Sheaves of lines and sets of corresponding points.

Models of non-Euclidean geometry. Distances and angles in the Poincare and Beltrami- Klein models. Riemannian metric and groups of transformations of models.

Last update: T_KDM (24.05.2004)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html