SubjectsSubjects(version: 962)
Course, academic year 2011/2012
   Login via CAS
Non-euclidean geometry - ON2310105
Title: Neeuklidovské geometrie
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2011 to 2011
Semester: summer
E-Credits: 2
Examination process: summer s.:combined
Hours per week, examination: summer s.:0/2, MC [HT]
Capacity: unknown / unknown (50)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Is provided by: OKN2310105
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: PhDr. Petr Dvořák, Ph.D.
doc. RNDr. Jaroslav Zhouf, Ph.D.
Annotation -
The course focuses on the axiomatic building of geometry (mathematical theory) and on the work with selected modesl of non-Euclidean geometries (hyperbolic, elliptic) with the goal to understand the geometric description of real world.
Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
Aim of the course -

To goal is to deeper understand a geometric description of real world in the context of the historical development of geometry.

Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
Literature -

PAVLÍČEK, J.B. Základy neeukleidovské geometrie Lobačevského. Praha: Přírodovědecké vydavatelství, 1953.

VRBA, A. Geometrie na počítači. Učebnice pro kurzy TTT. Praha, 1999.

SEKANINA, M. a kol. Geometrie 1,2. Praha: SPN, 1986.

COXETER, H.S.M. Introduction to Geometry. John Wiley & Sons, USA, 1989.

Last update: DVORAKP/PEDF.CUNI.CZ (02.04.2009)
Teaching methods -

Seminar.

Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
Requirements to the exam - Czech

Studenti studují základní studijní literaturu a zpracovávají seminární práce (zadané úlohy).

Počet konzultací: 8

Last update: DVORAKP/PEDF.CUNI.CZ (02.04.2009)
Syllabus -

Review of the historical development of geometry.

Geometry as a theoretical discipline, axiomatic building of geometry.

Axiomatic building of euclidean geometry: axioms, incidence, order, congruence, parallelism, continuity.

Lobachevski geometry: absolute geometry, Lobachevski axiom, historical notes to the fifth postulate, Beltrami-Klein model, etc.

Systems of axims and their properties, ways towards non-euclidean geometry.

Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html