|
|
|
||
The course focuses on the axiomatic building of geometry (mathematical theory) and on the work with selected modesl of non-Euclidean geometries (hyperbolic, elliptic) with the goal to understand the geometric description of real world.
Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
|
|
||
To goal is to deeper understand a geometric description of real world in the context of the historical development of geometry. Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
|
|
||
PAVLÍČEK, J.B. Základy neeukleidovské geometrie Lobačevského. Praha: Přírodovědecké vydavatelství, 1953. VRBA, A. Geometrie na počítači. Učebnice pro kurzy TTT. Praha, 1999. SEKANINA, M. a kol. Geometrie 1,2. Praha: SPN, 1986. COXETER, H.S.M. Introduction to Geometry. John Wiley & Sons, USA, 1989. Last update: DVORAKP/PEDF.CUNI.CZ (02.04.2009)
|
|
||
Seminar. Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
|
|
||
Studenti studují základní studijní literaturu a zpracovávají seminární práce (zadané úlohy).
Počet konzultací: 8 Last update: DVORAKP/PEDF.CUNI.CZ (02.04.2009)
|
|
||
Review of the historical development of geometry. Geometry as a theoretical discipline, axiomatic building of geometry. Axiomatic building of euclidean geometry: axioms, incidence, order, congruence, parallelism, continuity. Lobachevski geometry: absolute geometry, Lobachevski axiom, historical notes to the fifth postulate, Beltrami-Klein model, etc. Systems of axims and their properties, ways towards non-euclidean geometry. Last update: STEHLIKO/PEDF.CUNI.CZ (21.05.2009)
|