The aim of the course is to introduce the possibility of bioenergy cost of physical activity as the starting tool for
assessing the relationship between intervention and its effect for the needs of both the management of sports
training and for primary and secondary prevention in selected patient groups. In particular, the energy cost of basic
physical activities such as walking, running, swimming and cycling will be explored.
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
The aim of the course is to introduce the possibility of bioenergy cost of physical activity as the starting tool for
assessing the relationship between intervention and its effect for the needs of both the management of sports
training and for primary and secondary prevention in selected patient groups. In particular, the energy cost of basic
physical activities such as walking, running, swimming and cycling will be explored.
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
Course completion requirements -
1. Evaluation of the load protocol
2. Knowledge test
3. Interpretation of a specific test into a real sports environment
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
1. Evaluace zátěžového protokolu
2. Znalostní test
3. Interpretace konkrétního testu do reálného prostředí sportu
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
Literature -
1. ASTRAND, P.O., RODAHL, K. (1996). Textbook of Work Physiology. New York: McGraw Hill. 2. Brennan, S.F., Cresswell, A.G., Farris, D.J., Lichtwark, G.A. (2019) The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling. Med Sci Sports Exerc. May, 51(5):941-950. doi: 10.1249/MSS.0000000000001863. 3. BUNC, V. (2016) Obesity - Causes and Remedies. Physical Activity Review, 4:50-56. 4. Danielsen, J., Sandbakk, Ø., McGhie, D., Ettema, G. (2019) Mechanical energetics and dynamics of uphill double-poling on roller-skis at different incline-speed combinations. PLoS One. Feb 22, 14(2):e0212500. doi: 10.1371/journal.pone.0212500. eCollection 2019. 5. HEYWARD, V.H. (2010). Advanced Fitness Assessment and Exercise Prescription. Champaign, Il: Human Kinetics. 6. Hill, J.O., Wyatt, H.R., Peters, J.C. (2012). Energy balance and obesity. Circulation. 126:126-32. 7. MCARDLE, W.D., KATCH, F.I., KATCH, V.L. (1996). Exercise physiology: energy nutrition, and human performace. Wiliams and Wilkins, Baltimore: Wiliams and Wilkins. 8. SPARROW, W.A. (ed), (2000). Energetics of Human Activity. Champaign, Il: Human KineticsZamparo, P., Pavei, G., Monte, A., Nardello, F., Otsu, T., Numazu, N., Fujii, N., Minetti. A.E. (2019) Mechanical work in shuttle running as a function of speed and distance: Implications for power and efficiency. Hum Mov Sci. Jun 13, 66:487-496. doi: 10.1016/j.humov.2019.06.005.
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
1. ASTRAND, P.O., RODAHL, K. (1996). Textbook of Work Physiology. New York: McGraw Hill. 2. Brennan, S.F., Cresswell, A.G., Farris, D.J., Lichtwark, G.A. (2019) The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling. Med Sci Sports Exerc. May, 51(5):941-950. doi: 10.1249/MSS.0000000000001863. 3. BUNC, V. (2016) Obesity - Causes and Remedies. Physical Activity Review, 4:50-56. 4. Danielsen, J., Sandbakk, Ø., McGhie, D., Ettema, G. (2019) Mechanical energetics and dynamics of uphill double-poling on roller-skis at different incline-speed combinations. PLoS One. Feb 22, 14(2):e0212500. doi: 10.1371/journal.pone.0212500. eCollection 2019. 5. HEYWARD, V.H. (2010). Advanced Fitness Assessment and Exercise Prescription. Champaign, Il: Human Kinetics. 6. Hill, J.O., Wyatt, H.R., Peters, J.C. (2012). Energy balance and obesity. Circulation. 126:126-32. 7. MCARDLE, W.D., KATCH, F.I., KATCH, V.L. (1996). Exercise physiology: energy nutrition, and human performace. Wiliams and Wilkins, Baltimore: Wiliams and Wilkins. 8. SPARROW, W.A. (ed), (2000). Energetics of Human Activity. Champaign, Il: Human KineticsZamparo, P., Pavei, G., Monte, A., Nardello, F., Otsu, T., Numazu, N., Fujii, N., Minetti. A.E. (2019) Mechanical work in shuttle running as a function of speed and distance: Implications for power and efficiency. Hum Mov Sci. Jun 13, 66:487-496. doi: 10.1016/j.humov.2019.06.005.
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
Requirements to the exam -
80% participation, written report with course topic
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
80% účast, písemná zpráva s tématem kurzu
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
Syllabus -
1. Introduction 2. Movement - characteristics and "species" 3. Demand of physical activities 4. Physical activity energy cost, relationship energy - exercise intensity 5. Dependence on age, training and previous physical experience 6. Cultivation of "techniques" of physical activity as a basis for energy cost reduction 7. Coefficient of physical activity energy cost 8. Energy cost of walking and running 9. Energy balance of physical activity, adaptation and energy cost 10. Mechanical efficiency of physical activity 11. Determination of physical activities energy cost as a basis for the management of movement training 12. Evaluation in the laboratory 13. Field evaluation 14. Use in the movement intervention proposal and the construction of physical training
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)
1. Úvod
2. Pohyb - charakteristika a "druh"
3. Náročnost pohybových aktivit
4. Fyzická aktivita energetické náklady, vztah energie - intenzita cvičení
5. Závislost na věku, trénovanosti a předchozích fyzických zkušenostech
6. Pěstování „technik“ fyzické aktivity jako základ pro snižování nákladů na energii
7. Koeficient energetické náročnosti fyzické aktivity
8. Energetické náklady chůze a běhu
9. Energetická bilance fyzické aktivity, adaptace a energetické náklady
10. Mechanická účinnost pohybové aktivity
11. Stanovení energetické náročnosti pohybových aktivit jako základ pro řízení pohybového tréninku
12. Hodnocení v laboratoři
13. Terénní hodnocení
14. Využití při návrhu pohybové intervence a konstrukci tělesné přípravy
Last update: Hráský Pavel, PhDr., Ph.D. (19.01.2025)