SubjectsSubjects(version: 970)
Course, academic year 2017/2018
   Login via CAS
Non-euclidean geometry - OKBM1M125A
Title: Neeuklidovská geometrie
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2017 to 2017
Semester: summer
E-Credits: 3
Examination process: summer s.:
Hours per week, examination: summer s.:0/0, Ex [HT]
Extent per academic year: 8 [hours]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: combined
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: Mgr. Marie Holíková, Ph.D.
Pre-requisite : OKBM1M102A
Annotation -
The content of the subject is focused on the axiomatic development of geometry and selected models of non-euclidean geometries (hyperbolic, elliptic) with the aim to better understand geometrization of the real world.
Last update: Holíková Marie, Mgr., Ph.D. (24.05.2018)
Course completion requirements -

Completing homework, oral examination.

Last update: Holíková Marie, Mgr., Ph.D. (24.05.2018)
Literature - Czech

PAVLÍČEK, J. B. Základy neeukleidovské geometrie Lobačevského. Praha: Přírodovědecké vydavatelství, 1953
GATIAL, J.,  HEJNÝ, M. Stavba Lobačevského planimetrie. Praha: Mladá fronta, 1969
COXETER, H. Introduction to geometry. New York: Wiley, 1989. ISBN 0-471-50458-0.
SOMMERVILLE, D. The elements of non-Euclidean geometry. New York: Dover Publications, 1958

Last update: Holíková Marie, Mgr., Ph.D. (24.05.2018)
Syllabus -

Historic development of geometry.
Axiomatic development of geometry, the absolute geometry. 
The parallel axiom and equivalent theorems.
Axiom of incidence, ordering, conguence and continuity. 
Lobachevsky's axiom and elementary properties of the hyperbolic geometry.
Models of the planar hyperbolic geometry and their properties and mutual relations.
Elemetary properties of the elliptic geometry.
A sphere as a model of the elliptic geometry.

Last update: Holíková Marie, Mgr., Ph.D. (24.05.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html