SubjectsSubjects(version: 850)
Course, academic year 2019/2020
   Login via CAS
History of Mathematics - O02310034
Title in English: Historie matematiky
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2012
Semester: summer
E-Credits: 3
Examination process: summer s.:
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unknown / unknown (999)
Min. number of students: unlimited
State of the course: not taught
Language: Czech
Teaching methods: full-time
Is provided by: ON2310003
Explanation: Rok5
Old code: HIMA
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: prof. RNDr. Ladislav Kvasz, DSc., Dr.
Classification: Mathematics > Didactics of Mathematics
Pre-requisite : O0231SOUB
Interchangeability : ON2310003
Annotation -
Last update: KVASZ/PEDF.CUNI.CZ (30.10.2008)
Ancient Mathematics, in particular Greek. Medieval Maths (European, Arabic). Mathematics of 16th-19th century
Aim of the course -
Last update: KVASZ/PEDF.CUNI.CZ (30.10.2008)

The aim of the course is to offer the students of mathematics education basic information about the development of mathematics. It will discuss the contributions of the most outstanding mathematicians of the past and will describe the main periods in the history of mathematics.

Literature -
Last update: KVASZ/PEDF.CUNI.CZ (30.10.2008)
  • D.J. Struik, Dějiny matematiky , Praha 1963
  • A.Kolman, Dějiny matematiky ve starověku, Praha 1968
  • A.P. Juškevič, Dějiny matematiky ve středověku, Praha 1978
  • E.Fuchs a kol., Světonázorové problémy matematiky IV
  • Diedonné: Geschichte der Mathematik 1700-1900 (1985)
  • Kline M. Mathematical thought from ancient to modern time (1972)
Teaching methods -
Last update: KVASZ/PEDF.CUNI.CZ (30.10.2008)


Syllabus -
Last update: KVASZ/PEDF.CUNI.CZ (30.10.2008)

Introduction to the study of history of mathematics. The available literature.

Prehistory. Phylogeny and ontogeny. Expression of quantity in aboriginal languages.

First mathematical manuscripts. Egypt, Mesopotamia.

Mathematics in ancient Greece. The main centres and main figures. The main contributions of Eudoxus, Euclid, Archimedes, Apollonius, Diophantos.

Mathematics of oriental countries (China, India, Islamic countries). The main contributions of Arabic mathematicians. The transmission of oriental mathematics to Europe.

Development of algebra, the solution of cubic equations - Tartaglia, Cardano. Cassus irreducibilis and the invention of complex numbers. The proof of the insolubility of the quintic equations Galois, Ruffini, Abel. The use of algebra in geometry - the birth of analytic geometry.

First steps of non-Euclidean geometry. Lobachevski, Bolyai and Gauss. Riemann and the generalisation of geometry. The birth of topology.

The development of the calculus. Newton, Leibniz, Euler, Cauchy. The birth of the theory of real numbers. From calculus to set theory - Cantor.

Charles University | Information system of Charles University |