SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
Introduction to Mathematical Methods of Physics - NUFY081
Title: Úvod do matematických metod fyziky
Guaranteed by: Department of Physics Education (32-KDF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:0/3, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
Guarantor: doc. RNDr. Mgr. Vojtěch Žák, Ph.D.
prof. RNDr. Jiří Podolský, CSc., DSc.
RNDr. Marie Snětinová, Ph.D.
Classification: Teaching > Physics
Incompatibility : NUFY027
Interchangeability : NFUF804, NUFY027
Is incompatible with: NFUF804
Is interchangeable with: NFUF804, NUFY027
Annotation -
Explanation and exercising of various mathematical methods used in the introductory physics course. Practical applications and solution of particular physical problems are emphasized. For the 1st year of the Bc study Physics aimed at Education (Physics-Mathematics).
Last update: T_KDF (23.05.2003)
Course completion requirements - Czech

Podmínky k získání zápočtu pro studenty prezenčního studia:

  • Alespoň 75% účast na výuce;
  • dále je podmínkou zápočtu vypracování dvou úkolů, které studenti musejí odevzdat v předem stanoveném termínu.


Podmínky k získání zápočtu pro studenty kombinovaného studia a kurzu CŽV:

  • Podmínkou zápočtu je vypracování dvou úkolů, které studenti musejí odevzdat v předem stanoveném termínu.


Charakter podmínek pro získání zápočtu vylučuje opakování.

Last update: Snětinová Marie, RNDr., Ph.D. (12.10.2017)
Literature -

Kvasnica J.: Matematický aparát fyziky, Academia, Praha, 1989.

Musilová J. & Musilová P.: Matematika pro porozumění a praxi I, VUTIUM, Brno, 2006.

Last update: T_KDF (12.05.2015)
Syllabus -

SYLABUS EN:

Coordinate systems.
The most common coordinates in plane and space: Cartesian, polar, cylindrical and spherical. Definition and motivation: planetary motion ...

Function and its derivative.
Recalling functions and limits. Differentiation and elementary methods of calculus. Physical applications, differential equations and examples (radioactive decay, discharging, harmonic oscillations). Three important generalizations: higher-order derivatives (Taylor expansion of functions), differentiation of functions of several variables (partial derivative), derivatives of vectors (velocity and acceleration in non-Cartesian coordinates).

Integration.
A primitive function (motivation: shape of water surface in a rotating glass), indefinite integral. Elementary rules and methods of calculus (per partes method, substitution, partial fractions). Definite integrals and their properties. Newton-Leibniz formula. Various physical and geometrical applications. Unbounded integrals: Euler-Poisson-Laplace integral and velocities of molecules.

Last update: T_KDF (12.05.2015)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html