SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Gravitational Waves - NTMF089
Title in English: Gravitační vlny
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018 to 2018
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Jiří Podolský, CSc., DSc.
Classification: Physics > Theoretical and Math. Physics
Annotation -
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (03.05.2019)
The course is an introduction to an extensive topical field of study of gravitational waves in Einstein’s general relativity. We will summarize 100 years of the field (both its theoretical and experimental aspects), the first detection of gravitational waves from a binary black hole merger (by LIGO interferometers in 2015), current status, and expected future. In the second part of the course, selected topics in theory of gravitational waves and radiation will be studied in more detail.
Aim of the course -
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (03.05.2019)

The aim of the course is to present an overview of the vast topic of gravitational waves (historical context, present state, and future perspectives), and subsequently to concentrate more deeply on selected topics in the theory of exact and perturbative gravitational waves.

Literature -
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (03.05.2019)

Misner C. W., Thorne K. S., Wheeler J. A.: Gravitation, Freeman, San Francisco, 1973.

Schutz B. F.: A First Course in General Relativity. Cambridge University Press, Cambridge, 1985.

Ciufolini et al. (eds.): Gravitational Waves. Institute of Physics, Bristol, 2001.

Blair D. G. (ed.): The Detection of Gravitational Waves. Cambridge University Press, Cambridge, 1991.

Bičák J., Rudenko V. N.: skripta Teorie relativity a gravitační vlny, Univerzita Karlova, Praha, 1985.

Griffiths J. B., Podolský J.: Exact Space-Times in Einstein's General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2009.

Kennefick D.: Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton University Press, Princeton, 2007.

Abbott, B. P. et al.: LIGO: the Laser Interferometer Gravitational-Wave Observatory, Rep. Prog. Phys. 72 (2009) %076901.

Abbott, B. P. et al.: Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) %061102.

Podolský J.: Gravitační vlny a možnosti jejich detekce, Pokroky MFA 40 (1995) 272.

Podolský, J.: Teorie gravitačního záření, Čs. čas. fyz. A55 (2005) 86.

Podolský, J.: Gravitační vlny poprvé zachyceny: %GW150914 ze srážky černých děr, Pokroky MFA 61 (2016) 89.

Podolský, J.: Detekce gravitačních vln poctěna Nobelovou cenou 2017, Pokroky MFA 63 (2018) 1.

Syllabus -
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (03.05.2019)
A. Brief overview of the whole field

History of gravitational waves theory (from Einstein to equation of geodesic deviation, beginning of the golden age). Fundamental properties of gravitational waves. History of gravitational wave detectors (from Weber to LIGO). Astrophysical sources of gravitational waves (from first estimates to binary pulsar PSR 1913+16, and beyond). Advanced LIGO and Virgo (brief description of technological miracles). First direct detection of the gravitational wave %GW150914, and 2017 Nobel Prize (description of the event, including the introduction to signal analysis and determination of the source parameters by comparing to perturbative calculations and numerical simulations). Summary of all detections to date. Dawn of the multi-messenger astronomy. Future detectors of gravitational waves (KAGRA, LISA). Expected spectrum of gravitational waves.

B. Selected topics in theory of gravitational waves

Einstein’s linearized gravitational waves versus exact pp-waves. Discussion of measurable properties and effects (Ricci and Weyl tensors, algebraic structure, geodesic deviation in a general dimension, including any cosmological constant). Standard methods of 1960s, asymptotic behaviour of radiative spacetimes (Bondi-Sachs, optical scalars, news, peeling, Penrose conformal methods etc.). Exact solutions to Einstein’s equations describing gravitational waves (main classes: Kundt and Robinson-Trautman, impulsive waves, collision of plane waves, further exact solutions and their properties). Principal perturbation methods (Isaacson’s high-frequency approximation, geometrical optics, Efroimsky, PPN, EOB etc.).

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html