Physics of Complex Systems - NTMF071
|
|
|
||
The lecture represents an introduction into an area where statistical physics and computer science meet. We show
how the algorithmic complexity relates to critical behavior close to phase transition. We explain the methods used
in statistical physics of complex systems and applied in modelling complex networks by random graphs, in
combinatorial optimization and algorithm design.
For master and PhD students.
Last update: Podolský Jiří, prof. RNDr., CSc., DSc. (15.05.2017)
|
|
||
Ústní zkouška Last update: Houfek Karel, doc. RNDr., Ph.D. (11.06.2019)
|
|
||
M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific, 1986.
H. Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford University Press, 2001.
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, 2003. Last update: Podolský Jiří, prof. RNDr., CSc., DSc. (15.05.2017)
|
|
||
Zkouška je ústní, požadavky odpovídají sylabu, v detailech pak tomu, co bylo během semestru odpřednášeno. Last update: Houfek Karel, doc. RNDr., Ph.D. (11.06.2019)
|
|
||
Critical phenomena
Phenomenology of critical phenomena, singular behavior near critical point, critical exponents, universality, universality classes. Algorithmic complexity P, NP, NP-complete problems, relation to slow dynamics close to critical point, cellular automata, self-organized criticality Network theory and random graphs Erdös-Rényi model, scale-free networks Combinatorial optimization simulated annealing, replica method, spin glasses, neural networks, travelling salesman problem, K-SAT Last update: Podolský Jiří, prof. RNDr., CSc., DSc. (15.05.2017)
|