|
|
|
||
Hamiltonian formalism in field theory, 3+1 splitting. Quantization on a curved background, Fock basis, coherent
states, vacuum state, normal ordering, Bogoliubov transformation, S-matrix, generating functional. Static
spacetimes, diagonalization of the Hamiltonian, thermal states, Green functions, their analytical properties and
singular structure, Wick rotation. Moving mirrors, cosmological particle creation, Unruh effect, particle detectors.
Hawking effect, choice of modes and vacuum state. Theormodynamics of black holes. Quantization in de Sitter
spoacetime.
For students of Mgr and PhD.
Last update: Houfek Karel, doc. RNDr., Ph.D. (14.05.2021)
|
|
||
Oral exam Last update: Houfek Karel, doc. RNDr., Ph.D. (09.05.2023)
|
|
||
Wald R. M.: Quantum Field Theory in Curved Spacetime and Black Hole (University Of Chicago Press, Chicago, 1994) Birrell N. D., Davies P. C. W.: Quantum fields in curved space (Cambridge University Press, Cambridge, 1984) Mukhanov V., Winitzki S.: Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2007) Parker L., Toms D.: Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2009) Fulling S. A.: Aspects of Quantum Field Theory in Curved Spacetime Thermodynamics (Cambridge University Press, Cambridge, 1989) Frolov V., Novikov I.: Black Hole Physics - Basic Concepts and New Developments (Kluwer Academic Publisher, Dordrecht, 1998) Fabbri A., Navarro-Salas J.: Modeling Black Hole Evaporation (Imperiál College Press, London, 2005) Jacobson T.: Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect, arXiv: gr-qc/0208048 (2002) Dewitt B. S.: Quantum Field Theory In Curved Space-Time, Phys. Rept. 19, 295 (1975) Last update: KRTOUS/MFF.CUNI.CZ (19.09.2010)
|
|
||
The oral exam. Students are examined from material in the syllabus and covered in lectures. Last update: Houfek Karel, doc. RNDr., Ph.D. (09.05.2023)
|
|
||
Hamiltonian formalism in field theory, 3+1 splitting. Quantization on a curved background, Fock basis, coherent states, vacuum state, normal ordering, Bogoliubov transformation, S-matrix, generating functional. Static spacetimes, diagonalization of the Hamiltonian, thermal states, Green functions, their analytical properties and singular structure, Wick rotation. Moving mirrors, cosmological particle creation, Unruh effect, particle detectors. Hawking effect, choice of modes and vacuum state. Theormodynamics of black holes. Quantization in de Sitter spacetime. Last update: Houfek Karel, doc. RNDr., Ph.D. (09.05.2023)
|