|
|
|
||
Numerical methods and their application to solution of the equations of mathematical physics. The course covers
the basic requirements from numerical mathematics for the final examination of theoretical physics.
Recommended in the first year of master study of theoretical physics, or in the last year of the bachelor study of
physics.
Last update: Houfek Karel, doc. RNDr., Ph.D. (18.05.2022)
|
|
||
Ústní zkouška a udělení zápočtu, který student dostane za vypracovanání úlohy zadané v poslední třetině semestru. Last update: Houfek Karel, doc. RNDr., Ph.D. (11.06.2019)
|
|
||
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes: The Art of Scientific Computing 3rd ed, Cambridge 2007, http://numerical.recipes/. E. Isaacson, H. B. Keller: Analysis of Numerical Methods, Dover 1966. L. N. Trefethen, D. Bau III: Numerical Linear Algebra, Siam 1997. E. Vitásek: Numerické metody, SNTL Praha 1987. Last update: Houfek Karel, doc. RNDr., Ph.D. (18.05.2022)
|
|
||
Oral exam. Before coming to exam, student must solve one practical programming task selected from the list provided in the last weeks of semester. Oral exam consists of two questions. First question is to describe the theory considering the selected practical task. The second question will be selected from the topics coverd by sylabus of the lecture. Last update: Čížek Martin, doc. RNDr., Ph.D. (16.10.2017)
|
|
||
Basic numerical methods and application to solutions of problems of mathematical physics. 1) Error, precision, stability. 2) Interpolation, extrapolation, reprezentation, derivation and integration of function. 3) Roots of function, fixed point theorem and axceleration of convergence. 4) Minimalization a maximalization. 5) Solution of ordinary differential equations. Boundary- and initial-value problems. 6) Linear algebra: matrix inversion and diagonalization. 8) Integral equations. 9) Fast Fourier transform. Last update: CIZEK (16.05.2005)
|