SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Introductory Seminar on Theoretical Physics II - NTMF029
Title: Proseminář teoretické fyziky II
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:0/2, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: http://utf.mff.cuni.cz/vyuka/NOFY070
Guarantor: prof. RNDr. Pavel Krtouš, Ph.D.
doc. RNDr. Otakar Svítek, Ph.D.
Classification: Physics > Theoretical and Math. Physics
Annotation -
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (21.05.2004)
Selected parts of theoretical and mathematical physics: Tensor calculus, curvilinear coordinates, curved spaces, Introduction to distributions, Fourier transformation, distribution in 3D, Green functions. Introduction to classical field theory. Feynman formulation of quantum mechanics. For the 2nd year of the physics study.
Course completion requirements - Czech
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (29.01.2021)

Tento předmět byl od roku 2020/21 plně nahrazen předmětem NOFY070 - Proseminář z teoretické fyziky.

Literature - Czech
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (29.01.2021)

K. Kuchař: Základy obecné teorie relativity, Academia, Praha 1968.

L. Schwartz: Matematické metody ve fyzice, SNTL, Praha 1972

J. W. Leech: Klasická mechanika, SNTL, Praha 1970.

R. P. Feynman, R. B. Leighton, M. L. Sands, Feynmanovy přednášky z fyziky 3, Fragment, Havlíčkův Brod 2002.

R. P. Feynman: Neobyčejná teorie světla a látky, Aurora, Praha 2001.

Syllabus -
Last update: prof. RNDr. Pavel Krtouš, Ph.D. (29.01.2021)
Vectors and tensors.
Affine space, vectors and linear forms, tensors, coordinate transformations, diagrammatic notation, scalar product and metric.
Curvilinear coordinates and vector analysis.
Tensor fields, gradient and nabla-operator, curvilinear coordinates, triads. Integrating vectors and tensors.
Introduction to distributions.
Basic definitions and properties, δ-distribution, derivatives of non-smooth functions, regularization of 1/x. Fourier transformation of distribution, examples. Distribution on manifolds, characteristic function, surface and linear δ-distributions and their derivatives. Aplications: point, linear and surface sources, dipoles, boundary conditions for electrostatic a magnetostatic, electric field near conductors.
Green functions
Green functions in one variable. Green function for Laplace operator, Laplace equation on a domain with a boundary, heat equation, perturbative solution of Schrödinger equation with potential.
Classical field theory
Lagrange and Hamilton formalism for fields, scalar and electromagnetic field, gauge symmetry.
Supplements for classical electrodynamics
Multipole expansion in terms of tensors. Description of continuum is spacetime, stress-energy tensor, electric current density, conservation laws.
From sum over trajectories to solution of differential equations.
Feynman's formulation of quantum mechanics: quantum histories, quantum indistinguishability, amplitude rules, measurement model. Path integral, amplitude of free particle evolution, perturbative solution of Schrödinger equation.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html