SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Algorithmic Randomness - NTIN088
Title: Algoritmická náhodnost
Guaranteed by: Department of Theoretical Computer Science and Mathematical Logic (32-KTIML)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Antonín Kučera, CSc.
Teacher(s): doc. RNDr. Antonín Kučera, CSc.
Class: DS, teoretická informatika
Classification: Informatics > Theoretical Computer Science
Is co-requisite for: NTIN089
Annotation -
Algorithmic randomness. Concepts of Kolmogorov complexity, various variants. Algorithmic randomness based on measure theory. A connection to recursion theory.
Last update: T_KTI (29.04.2015)
Aim of the course -

To learn fundamentals of algorithmic randomness

Last update: Kučera Antonín, doc. RNDr., CSc. (02.11.2019)
Course completion requirements -

Oral examination

Last update: Kučera Antonín, doc. RNDr., CSc. (07.06.2019)
Literature -

Nies, Computability and randomness, Oxford University Press, 2009

R. Downey, D. Hirschfeldt, Algorithmic randomness and complexity, Springer, 2010

Ming Li, Paul Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 3rd edition, Springer, 2008

Last update: T_KTI (29.04.2015)
Requirements to the exam -

The course is finished by an oral examination.

Requirements at the oral examination correspond to the syllabus of the subject.

Last update: Kučera Antonín, doc. RNDr., CSc. (09.10.2017)
Syllabus -

Typicalness - measure theory, martingales

  • Calibration of notion "sets of measure zero"
  • Martin-Löf tests, Schnorr tests and their modifications
  • Universal Martin-Löf test
  • Basic properties of ML-random sets
  • Relativization of Martin-Löf randomness, van Lambalgen theorem
  • Martingales, randomness defined by various classes of martingales

Incompressibility - Kolmogorov complexity

  • Plain and prefix-free Kolmogorov complexity
  • Chaitin-randomness, equivalence of Martin-Löf randomness and Chaitin randomness
  • Halting probability, Omega-number
  • Algorithmic weakness, K-trivial sets

Last update: T_KTI (30.04.2015)
Entry requirements - Czech

Znalosti na úrovni přednášky Rekurze

Last update: T_KTI (29.04.2015)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html