|
|
|
||
An introductory course on computability, relative computability, and arithmetical hierarchy
Last update: T_KTI (30.04.2015)
|
|
||
To learn fundamentals of computability Last update: Hric Jan, RNDr. (07.06.2019)
|
|
||
Oral examination Last update: Kučera Antonín, doc. RNDr., CSc. (07.06.2019)
|
|
||
Soare R. I.: Recursively enumerable sets and degrees. Springer-Verlag, 1987
Odifreddi P.: Classical recursion theory. North-Holland, 1989
S.B. Cooper. Computability Theory Chapman Hall, 2003
Nies. Computability and randomness, Oxford Logic Guides. Oxford University Press, Oxford, 2009
R. Downey, D. Hirschfeldt. Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York, 2010
A. Shen, N. Vereshchagin. Computable functions, Student Mathematical Library, vol. 19, AMS, 2003
Last update: T_KTI (29.04.2015)
|
|
||
The course is finished by an oral examination.
Requirements at the oral examination correspond to the syllabus of the subject.
Last update: Kučera Antonín, doc. RNDr., CSc. (09.10.2017)
|
|
||
Introduction to computability
Relative computability
Last update: T_KTI (30.04.2015)
|
|
||
A basic knowledge of computability equivalent to course NTIN090 (or NTIX090) Last update: Kučera Antonín, doc. RNDr., CSc. (14.02.2022)
|