|
|
|
||
Introductory lectures on Automata Theory and Formal Grammars. The emphasis is put on basic terminology and fundamental results. We study and highlight connections between the following formal models: finite-state and push-down automata (both deterministic and non-deterministic), Turing machines (including the halting problem), regular, context-free, and context-sensitive grammars.
Last update: T_KTI (15.05.2003)
|
|
||
M. Chytil: Automaty a gramatiky, SNTL Praha, 1984
V. Koubek: Automaty a gramatiky, elektronický text (http://kti.mff.cuni.cz/downloads/Automstr_ps.zip), 1996
R. Barták: Automaty a gramatiky: on-line, elektronický text (http://kti.mff.cuni.cz/~bartak/automaty/), 2001
M. Chytil: Teorie automatů a formálních jazyků, skripta MFF UK, 1978
M. Chytil: Sbírka řešených příkladů z teorie automatů a formálních jazyků, skripta MFF UK, 1987
M. Demlová, V. Koubek: Algebraická teorie automatů, SNTL Praha, 1990
J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979 Last update: T_KTI (15.05.2003)
|
|
||
Finite-state automata and regular languages, Nerode theorem, equivalence and reduction of automata, non-determinism.
Closure properties, regular expressions, Kleene theorem, pumping lemma.
Formal grammars, Chomsky hierarchy, regular, context-free, and context-sensitive grammars.
Context-free grammars, derivation, reduction, normal forms, pumping lemma, closure properties, deterministic and non-deterministic push-down automata.
Recursively enumerable languages, Turing machines, algorithmically undecidable problems. Last update: T_KTI (15.05.2003)
|